تحلیل تناقض حوادث شغلی رخ داده در میان کارگران شهید سازمان تامین اجتماعی در یک دوره زمانی ده ساله

نمونه گیری و زمینه:
روش تحلیل تناقض و تهیه الگوی حوادث و مخاطرات شغلی شامل دو مراحل است: اولین مراحل مورد بررسی آماری آن موجود بوده و دومین مراحل پیش بینی حوادث و آسیبهای ناشی از آن برای هر واحد و هر روز این امر را از طریق آماری محاسبه می‌کنند.

هدف:
هدف این مطالعه ارائه اولین الگوی حوادث و مخاطرات شغلی به صورت جدید و جزئی به عنوان یک دست آمده (اولین الگوی حوادث و مخاطرات شغلی) شامل شش ریسک و هفت آسیب می‌باشد که این الگوی بدست آمده از دو جزیه و شاخص دارند. برای ارزیابی و پیشگیری از حوادث و آسیبهای محیطی، باید دقت و اهمیت این هماهنگی را در این روش را در نظر بگیریم.

نتیجه‌گیری:
نتیجه‌گیری این مطالعه این است که تأثیر ریسک‌های مختلفی در حوادث شغلی متفاوت است و این تفاوت‌ها باعث شده که حوادث شغلی در رشته‌های مختلف مختلف باشد. بنابراین، برای کاهش حوادث شغلی، باید به شکلی عمل کنیم که میزان ریسک‌ها را به حداقل برسانیم و آسیب‌ها را در نظر بگیریم.

کلیدواژه‌ها: تحلیل تناقض، مدارس ریسک، آسیب، حوادث شغلی

مقدمه:
در حال حاضر ارزیابی ریسک‌های ایمنی و پیشگیری از حوادث شغلی در محیط‌های کاربردی و پیش بینی حوادث و آسیب‌های ناشی از آن، بسیار مهم و ضروری است. به همین ترتیب، در این مقاله، به بررسی ریسک‌های مختلفی و آسیب‌های ناشی از آن در محیط‌های کاربردی اشاره شد.

هسته‌نورد (۳): در حوادث محرکت کاری این تحقیق گنجانه‌تر می‌باشد. در این مقاله، تا پایان سال، بیش از ۱۳۰ هزار و ۳۱۱ کارگر در این رشته‌ها مشغول به کار بوده و حوادث شغلی مربوط به آن مشاهده شده است.

جکیده:
زمینه و هدف: روش تحلیل تناقض و تهیه الگوی حوادث و مخاطرات شغلی مورد بررسی آماری است. کارشناس ارشد مهندسی بهداشت حرفه‌ای، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

ارزیابی و پیشگیری از حوادث و آسیب‌های ناشی از آن، بسیار مهم و ضروری است. به همین ترتیب، در این مقاله، به بررسی ریسک‌های مختلفی و آسیب‌های ناشی از آن در محیط‌های کاربردی اشاره شد.
استفاده از تجزیه و تحلیل قابلیت اطمنیت، که برای روابط دائمی این حالتی استفاده می‌شود، ابزاری است که می‌تواند روابط دائمی را در حالتی نشان دهد که در آن‌ها تفاوت‌های اصلی از دیدگاه امنیت و مهندسی به صورت مختلف در یک شرکت ایجاد می‌شود. این نگاه به وضوح راهنمایی از اقدامات دیدگاه های امنیت و مهندسی به صورت، در زمینه‌های مختلف از اطمنیت و حمایت، می‌باشد. در نهایت، باعث می‌شود که ریسک‌ها به صورت جداگانه و همچنین به صورت مستقل مورد بررسی قرار گیرند، و حتی ممکن است از آن اطلاع نداشته باشد. در این صورت حاصل می‌شود که (FBD)، برای ارزیابی و تهیه الگوی حوادث ایمنی و حریق، مهندسی و پیشگیری، یک مدل احتمال منطقی فردیت و محوریت مفهوم فردیت ریسک حذف می‌شود و از لحاظ فیزیکی با استفاده از تحلیل قابلیت اطمنیت، که برای روابط دائمی این حالتی استفاده می‌شود، ابزاری است که می‌تواند روابط دائمی را در حالتی نشان دهد که در آن‌ها تفاوت‌های اصلی از دیدگاه امنیت و مهندسی به صورت مختلف در یک شرکت ایجاد می‌شود. این نگاه به وضوح راهنمایی از اقدامات دیدگاه های امنیت و مهندسی به صورت، در زمینه‌های مختلف از اطمنیت و حمایت، می‌باشد. در نهایت، باعث می‌شود که ریسک‌ها به صورت جداگانه و همچنین به صورت مستقل مورد بررسی قرار گیرند، و حتی ممکن است از آن اطلاع نداشته باشد. در این صورت حاصل می‌شود که (FBD)، برای ارزیابی و تهیه الگوی حوادث ایمنی و حریق، مهندسی و پیشگیری، یک مدل احتمال منطقی فردیت و محوریت مفهوم فردیت ریسک حذف می‌شود و از لحاظ فیزیکی با استفاده از تحلیل قابلیت اطمنیت، که برای روابط دائمی این حالتی استفاده می‌شود، ابزاری است که می‌تواند روابط دائمی را در حالتی نشان دهد که در آن‌ها تفاوت‌های اصلی از دیدگاه امنیت و مهندسی به صورت مختلف در یک شرکت ایجاد می‌شود. این نگاه به وضوح راهنمایی از اقدامات دیدگاه های امنیت و مهندسی به صورت، در زمینه‌های مختلف از اطمنیت و حمایت، می‌باشد. در نهایت، باعث می‌شود که ریسک‌ها به صورت جداگانه و همچنین به صورت مستقل مورد بررسی قرار گیرند، و حتی ممکن است از آن اطلاع نداشته باشد. در این صورت حاصل می‌شود که (FBD)، برای ارزیابی و تهیه الگوی حوادث ایمنی و حریق، مهندسی و پیشگیری، یک مدل احتمال منطقی تحلیل عمیق و دقت و تغییرات در حوزه‌های مختلف از دیدگاه امنیت و حمایت، می‌باشد. در نهایت، باعث می‌شود که ریسک‌ها به صورت جداگانه و همچنین به صورت مستقل مورد بررسی قرار گیرند، و حتی ممکن است از آن اطلاع نداشته باشد. در این صورت حاصل می‌شود که (FBD)، برای ارزیابی و تهیه الگوی حوادث ایمنی و حریق، مهندسی و پیشگیری، یک مدل احتمال منطقی

2 correspondence analysis

1 Functional Block Diagram
تناظر حوادث شغلی رخ داده در میان کارگران

جدول ۱- میانگین سالانه حوادث شغلی (میانگین ریسک-آسیب)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع</td>
<td></td>
</tr>
</tbody>
</table>

بررسی روش

به صورت ریف و آسیب (A) به صورت ستون (R) به صورت ریف، یک رویداد ترکیبی در خلاصه گردید که اصطلاحاً آن را متریس ریسک-آسیب می‌نامند. کدهای R بر اساس معیار سازمان بین المللی کاردار دهیم که فرآیند آمار کار (۱۹) از آن شده که یک از کدنده‌ها برای ریسک کامل یا از آن‌ها داده می‌گردد. آسیب و آسیب (A) به صورت یک یا چند عامل ایجاد کننده آسیب و جزئی از حادثه درک شده و به فرآیند فیزیکی که باعث یک آسیب می‌شود اشاره دارد. آسیب به عنوان اصل اصل‌ترین ریسک ارائه می‌گردد. آسیب عنصر ترکیبی و یا محصول بیولوژیکی است که از طریق آن می‌توان وقوع یک حادثه برای فرد شناسایی کرد.

در این مطالعه ابتدا گزارش‌های حوادث شغلی ثبت شده در سازمان تأمین اجتماعی در یک دوره زمانی ده ماهه از ابتدای سال ۱۳۸۶ تا پایان سال ۱۳۹۶ جمع‌آوری گردید و نوع ریسک و آسیب مربوط به هر یک از حوادث براساس معیارهای سازمان بین المللی کار مشخص گردید. در مرحله بعد میانگین سالانه حوادث شغلی در یک جدول پیش‌آموزی شام‌الرویک
راهنمای و همکاران

نخستین گام در تحلیل تناظر، بررسی نیم‌رخ‌ها (یعنی مجموعه فراوانی‌های نسبی) است که در حقیقت یک مفهوم اساسی برای تحلیل نتایج است. وزن‌هایی که به نیم‌رخ‌ها اختصاص می‌پذیرد، در تحلیل تناظر آن قدر اهمیت دارد که به آن نیم‌رخ مشابه گرفته شده است. یکی از مقاماتی است که مجموعه مسیر تخمینی بر جمع کل سطحی و مجموعه مسیر تخمینی بر جمع کل سطونی نامیده می‌شود (21).

نتایج تحلیل تناظر در نمودارهایی نمایش داده می‌شود که ترتیب کلی ناحیه‌ها در صفحات تصویری به‌طور زیر طبقه‌بندی می‌شود: در این ترتیب ناحیه‌ها فقط می‌توان یک صفحه‌ای بین عناصر سطوح و قابل برداشت در عناصر سطوح، به عنوان نام‌آوری می‌شوند. در حالتی که می‌توانیم جایگاه‌های نسبی یک صفحه از یک مجموعه را از لحاظ همه عناصر مجموعه‌های دیگر تخمین کنیم (20). برای تجزیه و تحلیل ناحیه‌ها از نرم‌افزار STATISTICA استفاده شده است.

یافته‌ها

متریس ریسک-آسیب (جدول 1) نشان دهنده‌بیانگی سالانه‌ها حادثه‌های ثبت شده در سازمان‌های اجتماعی از ابتدای سال ۱۳۶۴ تا یادبود ریسک (R) (5133 مورد) را بیان کرده که شامل فراوانی‌های اولیه (A) به صورت ردیف و فراوانی آن‌ها مربوط به صورت ستوت می‌باشد که با توجه به این بیشترین میانگین سالانه ریسک‌ها مربوط به سقوط افراد از ارتفاع (4716 مورد) کمترین مقدار آن مربوط به حادثات ناشی از مواد سمی (20 مورد) می‌باشد. به همین‌thesize بیشترین میانگین سالانه آسیب‌های مربوط به سکته‌ها آن‌ها مربوط به شکستگی اعضا (8158 مورد) کمترین مقدار آن مربوط به گاز‌گرفته‌ها (4 mass) می‌باشد.

شکل 1- پراکندگی نقاط سطر و ستون برگرفته شده از جدول 1
تناظر حوادث شغلی‌های داده‌های جدول 1

<table>
<thead>
<tr>
<th>جدول 2 - نیم‌به‌های سطحی داده‌های جدول 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>ب تعداد</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

شیمیایی (A14) و R15 (حوادث‌های ناشی از مواد سمی) با 89 مورد، و ممکن است به موارد ذکر شده، سقوط از ارتفاع (R1) و شکستگی آمداز (A1) از اهمیت به سرعت برقراری حوادث شغلی برخوردار هستند.

شکل 1 با طور مستقیم از تجزیه و تحلیل تناظر جدول 1 به دست آمده است که به عنوان اولین گروه ریسک‌آسیب شناسی‌تفاوتی می‌شود و همچنین می‌توان آن را به عنوان اولین گروه حوادث شغلی در نظر گرفت که این گروه از نظر تشکیل شده است: بعداً، با مقادیر ویژه برابر با 1/5/0 و بعداً 2، با مقادیر ویژه برابر با 1/5/0 می‌باشد که در مجموع تشکیل به‌طور مطلق 5، و نسبت به 1/5/0 این گروه در شش ریسک و هفتم آسیب‌ساخته‌نشده است که بیشترین وابستگی بین متغیرها به قرار زیر (حوادث‌های ناشی از مواد سمی و خودکشی‌ها) با 18 (آسیب‌ها) و A17 (آسیب‌های جدید) به‌طور مطلق 1/332 می‌باشد.
جدول ۳- نیم‌سرعت داده‌های جدول

<table>
<thead>
<tr>
<th>شماره</th>
<th>ماده</th>
<th>مقدار</th>
<th>ریسک</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.01</td>
<td>R1</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>0.02</td>
<td>R2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
<td>0.03</td>
<td>R3</td>
</tr>
<tr>
<td>A4</td>
<td>4</td>
<td>0.04</td>
<td>R4</td>
</tr>
<tr>
<td>A5</td>
<td>5</td>
<td>0.05</td>
<td>R5</td>
</tr>
<tr>
<td>A6</td>
<td>6</td>
<td>0.06</td>
<td>R6</td>
</tr>
<tr>
<td>A7</td>
<td>7</td>
<td>0.07</td>
<td>R7</td>
</tr>
<tr>
<td>A8</td>
<td>8</td>
<td>0.08</td>
<td>R8</td>
</tr>
<tr>
<td>A9</td>
<td>9</td>
<td>0.09</td>
<td>R9</td>
</tr>
<tr>
<td>A10</td>
<td>10</td>
<td>0.1</td>
<td>R10</td>
</tr>
<tr>
<td>A11</td>
<td>11</td>
<td>0.11</td>
<td>R11</td>
</tr>
<tr>
<td>A12</td>
<td>12</td>
<td>0.12</td>
<td>R12</td>
</tr>
<tr>
<td>A13</td>
<td>13</td>
<td>0.13</td>
<td>R13</td>
</tr>
<tr>
<td>A14</td>
<td>14</td>
<td>0.14</td>
<td>R14</td>
</tr>
<tr>
<td>A15</td>
<td>15</td>
<td>0.15</td>
<td>R15</td>
</tr>
<tr>
<td>A16</td>
<td>16</td>
<td>0.16</td>
<td>R16</td>
</tr>
<tr>
<td>A17</td>
<td>17</td>
<td>0.17</td>
<td>R17</td>
</tr>
<tr>
<td>A18</td>
<td>18</td>
<td>0.18</td>
<td>R18</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مربوط به عنصر A1 (شکستگی اعضا) می‌باشد، به بیان شده، به عنصر R1 (سموت افزاده) می‌باشد. به بیان شده، به علت پدیده‌هایی که مربوط به سطح A1 می‌باشد، به مقدار آن جبران می‌باشد.

بحث و نتیجه‌گیری

با توجه به نتایج حاصل از تحلیل تناقض، گروه‌های ریسک-اسب ایجاد شده شامل ۱۸ عدد شش می‌باشد، به عبارت دیگر ۱/۶۷ درصد از علت ایجاد آسیب مربوط به مواد شیمیایی (مسمومیت) (A13) ناشی از تشکیل‌های ناخالص است. همچنین آسیب‌های مسمومیت، غارگرفتنی، خطرات
دوره 14، شماره 34، مرداد و شهریور 1396

تناظر حوادث شغلی داده در میان کارگران

و همچنین ثابت شده است که مناسب ترین روش تحلیل برای حل کردن مشکلات سایر مدل‌های شبیه‌سازی هستند (24).

از روش‌های دیگری که در تحلیل حوادث شغلی کاربرد دارند، مدل عماملی می‌باشد که این مدل تا حدودی مکمل منطقی یا پژوهشگری و همکارانش است (12). مدل منطقی سابقه بیشتر از جهت کنترل به حداکثر رساند فراوانی و قراردادهای دیگر شرکت بوده و در حال حاضر با هدف کنترل به حداکثر رساند شدید حوادث از شرکت است. هر دو مدل به یک مدل عالی که در این مقاله با دو روش ارزیابی ریسک، کنترل به حداکثر رساند حوادث ایجاد می‌شود.

در یک مدل منطقی، ریسک شغلی به وسیله یک عمومی مدل می‌شود که این آزمون‌نامه FBD این شرکت به "دوز" و "دوز با خیال" تجزیه می‌شود. این عمومی مدل به فاصله و FBD مدل عمومی می‌باشد که محدودیت به حداکثر ریسک و FBD همچنین تبدیل شده که همراه با درختان روی داده مدل آنها برای تر ارزیابی هر مدلی تولید هر مدلی مکمل است به آسیب یا مرگ منجر شود استفاده می‌شود.

همچنین در مدل عماملی و کاربردی به تخته عنوان "خطر" و "این سی" مورد نظر قرار می‌گیرد. که برخی از ابزاری ازنظمیه سطحول از مدل منطقی، مثل دوز و "دوز با خیال" در مورد می‌باشد که همراه با دو سلسله گذاری دو ابزاری "وضع یابی" و "بی‌خیال" دو ابزاری دو ابزاری متغیرهای دو درخت از توانایی تولید یک فیکسی استفاده می‌شود که محدودیت عمده این تفاوت قدرت کردن ریسک‌ها قبل از وقوع حوادث از باشد و همچنین محدودیت در مدل عماملی که بر اساس استفاده و تحلیل درختی یا آزمایش (ثبات و ریسک) درخت حاصل، این گروه موثر می‌باشد که اطلاعات تخمین زده می‌شود و روز مهاجرت مشاهدات محیطی شرکت در این مطالعه حوادث رخ داده مورد پرسی قرار گیرند و به صحبت حوادث فرضی نمی‌باشد.

با استفاده از روش‌های دیگری مثل: آزمایش مقیاس کاراگان درست بوده، تجربه و تحلیل خودش ای سلسه‌گذاری کننده بوده، تجربه و تحلیل خوشه‌ای سلسه‌گذاری کننده بوده، بعضی از موارد مشابه با این مدل بسته به حداکثر ریسک و سیاست استفاده می‌شود. این مدل بسته به حداکثر ریسک و سیاست استفاده می‌شود. این مدل بسته به حداکثر ریسک و سیاست استفاده می‌شود.

9 Multidimensional scaling
10 Hierarchical Clustering Analysis

زیست‌محیطی، خانگی، آموزش یا کنترل که این گروه‌های سیستمیک - سیاست بسته‌ای شامل همه منابع، ریسک و سیاست

مرتبه به فاصله‌های اابزاری و مربوط به تکنیک‌های علمی می‌باشد. همچنین در این گروه حوادث شغلی به

سیرت رساندن ارزیابی ریسک به حداکثر کار و سیاست های ناشی از محتوای کارایی و همکارانش (10) که مدلی را

برای حوادث شغلی از آن مدل این همکارانش دارد. در

مدله که کارهای مختلف تصادف و حوادث شغلی و با روش‌های ارزیابی ریسک و سیاست بسته به دست امکان که گروه

ریسک سیاست بسته می‌باشد. در این مطالعه، شوکایه یا گروه

سیستم‌های معیارهای و به تصحیح از مطالعه کانته و همکارانش (9).
حوادث و مخاطرات شغلی در سطح کشور می‌باشد. در این مطالعه حوادث و مخاطرات شغلی ثبت شده در میان کارگران بیمه شده سازمان تأمین اجتماعی می‌باشد و لذا کارگران بیمه نشده که در صنایع مختلف مشغول به کار هستند مورد مطالعه قرار نگرفته‌اند.

لازم به ذکر است که در سطح کشور ایران تحقیقات و مطالعات فراوانی در زمینه ایمنی و حوادث شغلی انجام گرفته است، اما هیچگونه مطالعه مشابهی تاکنون انجام نشده است. و الگوی حوادث و مخاطرات شغلی بدست آمده می‌تواند اولین قدم برای پیش‌بینی و اولویت‌بندی حوادث در میان نیروهای کار باشد.

در نهایت نتایج کاربردی برای محققین و کارشناسان به این صورت می‌باشتند که اولین الگوی بدست آمده باعث ایجاد فرصت‌های جدید برای توسعه برنامه‌های کاربردی برای تحلیل، تفسیر و مدیریت حوادث و مخاطرات شغلی جهت بهبود حداقوی رساندن عدم قطعیت و افزایش عینیت می‌گردد. و همچنین در مطالعات بعدی می‌توان با استفاده از تکنیک‌های آماری و نرم‌افزارهای بهینه‌سازی مورد نیاز و با جزئیات بهینه‌تری به تحلیل و تفسیر حوادث شغلی پرداخت.

منابع

11 Uncertainty

12 Objectivity
 تناظر حوادث شغلی رخ داده در میان کارگران

19. 10th International Conference of Labour Statisticians [Internet]. 1962.
Abstract

Background and aims: Correspondence analysis method and preparation of accident and occupational hazards pattern enables forecasting and predicting accidents and prioritizations of risks and injuries to be obtained automatically. The procedure for any company, regardless of its size is applicable. This study presents the first model accidents and occupational hazards as a first step to identify and predict accident in the workforces.

Method: Initially we collected reports of occupational accidents registered in the Social Security for a period of ten years (2005 – 2015) (222,300 accidents) and the type of risk and injury related to any of the accidents were codified following the criteria of the International Labor Organization. In the next step, the average annual occupational accidents summarized in a contingency table, include of risk (R) as row and injury (A) as column, it called risk-injury matrix. Correspondence analysis was selected as the suitable method for optimizing the risk-injury matrix functions. Thus, we were used statistical software STATISTICA and correspondence analysis test for data analysis.

Results: The obtained risk-injury group (the first pattern accidents and occupational hazards) include of six risks and seven injuries that the obtained pattern is composed of two dimensions: dimension1, with eigenvalue $\lambda_1=0/562$, dimension2, eigenvalue$\lambda_2 =0/419$% is 78/6% of the total variance. The greatest affinities are contact with hot material (R11) with burn (A12); Accidents caused by burning and corrosive materials (R12) with other injuries (A18) and multiple injuries (A17); Contact with chemicals (R14) and accidents caused by toxic substances (R15) with gas shock (A14); Contact with electrical equipment (R13), explosions and fires (R17) with suffocation (A16) and poisoning (A13) and environmental hazards (A15) is the least affinity with other variables. Overall, mentioned variables have less affinity than other 23 variables.

Conclusion: This obtained risk-injury group includes all the or risk and injury variables related to the appearance of historically recent technological problems, the industrial revolution and scientific and technical development. In this group the Industrial accidents are identified in this group as risks associated with the work environment, and injuries being caused by the environment. This study is the first step to anticipate accidents and occupational hazards and prioritize risks and injuries and we can use these results fully to the goals came in the later stages.

Keywords: Correspondence analysis, risk-injury matrix, risk, injury, industrial accident.

1. Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
2. (Corresponding author), MSc in Occupational Health, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran. Email: yari.p@iums.ac.ir
3. Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran.
4. Assistant Professor of Biostatistics, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran.
5. MSc in Occupational Health, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran.

Iran Occupational Health, Vol. 14, No. 3, Agu-Sep 2017