Presentation and verification of a simple mathematical model for identification of the areas behind noise barrier with the highest performance

Mohammad Reza Monazzam

Abstract

Background and aims: Traffic noise barriers are the most important measure to control the environmental noise pollution. Diffraction from top edge of noise barriers is the most important path of indirect sound wave moves towards receiver. Therefore, most studies are focused on improvement of this kind.

Method: T-shape profile barriers are one of the most successful barriers among many different profiles. In this investigation the theory of destructive effect of diffracted waves from real edge of barrier and the wave diffracted from image of the barrier with phase difference of radians is used. Firstly a simple mathematical representation of the zones behind rigid and absorbent T-shape barriers with the highest insertion loss using the destructive effect of indirect path via barrier image is introduced and then two different profile reflective and absorption barrier is used for verification of the introduced model.

Findings: The results are then compared with the results of a verified two-dimensional boundary element method at 1/3 octave band frequencies and in a wide field behind those barriers. A very good agreement between the results has been achieved. In this method effective height is used for any different profile barriers.

Conclusion: The introduced model is very simple, flexible and fast and could be used for choosing the best location of profile rigid and absorptive barriers to achieve the highest performance.

Keywords: Noise barriers, BEM, Acoustical performance, Environment noise pollution, BEM

1. Tehran University of Medical Sciences, School of Public Health, Occupational Health Dept. Tehran, Iran.
 E-mail: mmonazzam@hotmail.com Tel/Fax: +9821 88992663

Iran Occupational Health, Vol. 6 (2). Summer 2009
ارائه یک مدل ریاضی ساده و اعتبار سنجی آن جهت تعیین بهترین حوزه عملکرد موانع صوتی

محمدمهدی رضا منظمی

چکیده
زمینه و هدف: موانع صوتی یکی از مهم‌ترین روشهای کنترل صدا در سیستم‌های صوتی می‌باشد. در بین راه‌های غیر مستقیم مهم ترین راه رسیدن موج از فرستنده به گیرنده از طریق انکسار از زبان‌های متفاوت می‌باشد. پژوهش که در خصوص موانع های جزئی بیشترین تأثیر را در این حوزه می‌باشد.

روش بررسی: یکی از بیشترین موانع های مطرح سیستم صوتی ژن‌های ماون است. این روش بر اساس یک توصیف موج پراش شده از زبان‌های متفاوت و محور جزئی گروهی می‌باشد. هدف از این تجربه کنترل نسبت میلی‌متری موانع به غیر محور را به صورت تاثیرگذاری طراحی و اجرای محور و برآورده شدن در هر یک از موانع است.

کلید واژه‌ها: موانع صوتی، مدل دوبعدی، جهت‌برداری، بهترین عملکرد آکوستیکی، موانع ت شکل

مقدمه
موانع صوتی یکی از مهم‌ترین ابزارهای کلیدی در سیستم‌های صوتی می‌باشد. در این ارتباط موانع می‌تواند به عنوان یکی از زیادترین موانع‌های کاربردی در سیستم‌های صوتی به‌کار رفته باشد. موانع ت شکل از موانع ت شکل یکی از مهم‌ترین موانعی است که در سیستم‌های صوتی به‌کار رفته می‌باشد. موانع های میانگین به‌دست اینکه در علوم پزشکی تهران

mmonazzam@hotmail.com

مراجع
1- (نویسنده مشترک) استادیار دانشکده بهداشت دانشگاه علوم پزشکی تهران
روش بررسی
برای محاسبه کارایی انواع مانع‌های صوتی باشکال پیچیده و سطوح پوشیده شده از مواد مختلف از روش عددی نظری استفاده شد [9]. جزئیات پیشرفت در خصوص این روش در مقاله منظم و همکاران قابل دسترس می‌باشد [7]. با وجود این، برای تفکر سطح فشار وارد بر هر مانع، بعد از ران را کمتر از نظری گیت [8].

که در آن، P موج و فرکانس زاویه است اگر بخواهیم ترکیب دو موج صوتی حاصل باشد، باید بخواهیم موج انعکاسی با استفاده از معادله زیر بوده:

$$p = e^{i(\alpha-kx)}$$

که در آن، α موج اول، β فرکانس زاویه است اگر بخواهیم ترکیب دو موج صوتی حاصل باشد، باید بخواهیم موج انعکاسی با استفاده از معادله زیر بوده:

$$p' = e^{i(\alpha-kx+\pi)}$$

لذا برای دستیابی به بیشترین اثر تخریب وجود شرط زیر را باید پاسخ بدهد:

$$kx = kx + \pi$$

صدای سی از حفظ کارایی مانع‌های صوتی دانلودی برای کاهش هرزی آنها این سری مطالعات کم بوده است.

ابتدای در این مطالعه، برای پیش بینی با الگوریتم افت سیاده میدان پیشین مانع‌های صوتی یک مدل ریاضی ساده معرفی شد. سپس یک تعداد از نتایج محاسبات ابتدا سنجی شده سیا بالا جدید و سیا با هم مقایسه شدند.

\[\text{شکل 1- شکل هندسی امواج غیر مستقیم مانع و تصویر مطالعه از ارتفاع موتر مانع آن} \]
ریاضیات کامل و دیدگاه آن در حل مسائل

(1) \[x = \frac{\sqrt{16y^2 + z^2}}{2} \]

(2) \[\frac{x}{y} = \frac{1}{z} \]

ارتفاع سطح آب بر حسب زمان:

\[h(t) = \frac{1}{2} g t^2 \]

(3) \[B = \frac{1}{2} \pi D^2 \]

(4) \[V = \frac{\pi}{6} D^3 \]

ذراتیت سطح آب بر حسب زمان:

\[t = \frac{1}{2} \pi t^2 \]

(5) \[\frac{v}{a} = \frac{1}{h} \]

(6) \[\frac{v}{a} = \frac{1}{h} \]

(7) \[\frac{v}{a} = \frac{1}{h} \]

(8) \[\frac{v}{a} = \frac{1}{h} \]

(9) \[\frac{v}{a} = \frac{1}{h} \]

(10) \[\frac{v}{a} = \frac{1}{h} \]

(11) \[\frac{v}{a} = \frac{1}{h} \]

(12) \[\frac{v}{a} = \frac{1}{h} \]

(13) \[\frac{v}{a} = \frac{1}{h} \]

(14) \[\frac{v}{a} = \frac{1}{h} \]

(15) \[\frac{v}{a} = \frac{1}{h} \]

(16) \[\frac{v}{a} = \frac{1}{h} \]

(17) \[\frac{v}{a} = \frac{1}{h} \]

(18) \[\frac{v}{a} = \frac{1}{h} \]

(19) \[\frac{v}{a} = \frac{1}{h} \]

(20) \[\frac{v}{a} = \frac{1}{h} \]

(21) \[\frac{v}{a} = \frac{1}{h} \]

(22) \[\frac{v}{a} = \frac{1}{h} \]

(23) \[\frac{v}{a} = \frac{1}{h} \]

(24) \[\frac{v}{a} = \frac{1}{h} \]

(25) \[\frac{v}{a} = \frac{1}{h} \]

(26) \[\frac{v}{a} = \frac{1}{h} \]

(27) \[\frac{v}{a} = \frac{1}{h} \]

(28) \[\frac{v}{a} = \frac{1}{h} \]

(29) \[\frac{v}{a} = \frac{1}{h} \]

(30) \[\frac{v}{a} = \frac{1}{h} \]

(31) \[\frac{v}{a} = \frac{1}{h} \]

(32) \[\frac{v}{a} = \frac{1}{h} \]

(33) \[\frac{v}{a} = \frac{1}{h} \]

(34) \[\frac{v}{a} = \frac{1}{h} \]

(35) \[\frac{v}{a} = \frac{1}{h} \]

(36) \[\frac{v}{a} = \frac{1}{h} \]

(37) \[\frac{v}{a} = \frac{1}{h} \]

(38) \[\frac{v}{a} = \frac{1}{h} \]

(39) \[\frac{v}{a} = \frac{1}{h} \]

(40) \[\frac{v}{a} = \frac{1}{h} \]

(41) \[\frac{v}{a} = \frac{1}{h} \]

(42) \[\frac{v}{a} = \frac{1}{h} \]

(43) \[\frac{v}{a} = \frac{1}{h} \]

(44) \[\frac{v}{a} = \frac{1}{h} \]

(45) \[\frac{v}{a} = \frac{1}{h} \]

(46) \[\frac{v}{a} = \frac{1}{h} \]

(47) \[\frac{v}{a} = \frac{1}{h} \]

(48) \[\frac{v}{a} = \frac{1}{h} \]

(49) \[\frac{v}{a} = \frac{1}{h} \]

(50) \[\frac{v}{a} = \frac{1}{h} \]

(51) \[\frac{v}{a} = \frac{1}{h} \]

(52) \[\frac{v}{a} = \frac{1}{h} \]

(53) \[\frac{v}{a} = \frac{1}{h} \]

(54) \[\frac{v}{a} = \frac{1}{h} \]

(55) \[\frac{v}{a} = \frac{1}{h} \]

(56) \[\frac{v}{a} = \frac{1}{h} \]

(57) \[\frac{v}{a} = \frac{1}{h} \]

(58) \[\frac{v}{a} = \frac{1}{h} \]

(59) \[\frac{v}{a} = \frac{1}{h} \]

(60) \[\frac{v}{a} = \frac{1}{h} \]

(61) \[\frac{v}{a} = \frac{1}{h} \]

(62) \[\frac{v}{a} = \frac{1}{h} \]

(63) \[\frac{v}{a} = \frac{1}{h} \]

(64) \[\frac{v}{a} = \frac{1}{h} \]

(65) \[\frac{v}{a} = \frac{1}{h} \]

(66) \[\frac{v}{a} = \frac{1}{h} \]

(67) \[\frac{v}{a} = \frac{1}{h} \]

(68) \[\frac{v}{a} = \frac{1}{h} \]

(69) \[\frac{v}{a} = \frac{1}{h} \]

(70) \[\frac{v}{a} = \frac{1}{h} \]

(71) \[\frac{v}{a} = \frac{1}{h} \]

(72) \[\frac{v}{a} = \frac{1}{h} \]

(73) \[\frac{v}{a} = \frac{1}{h} \]

(74) \[\frac{v}{a} = \frac{1}{h} \]

(75) \[\frac{v}{a} = \frac{1}{h} \]

(76) \[\frac{v}{a} = \frac{1}{h} \]

(77) \[\frac{v}{a} = \frac{1}{h} \]

(78) \[\frac{v}{a} = \frac{1}{h} \]

(79) \[\frac{v}{a} = \frac{1}{h} \]

(80) \[\frac{v}{a} = \frac{1}{h} \]

(81) \[\frac{v}{a} = \frac{1}{h} \]

(82) \[\frac{v}{a} = \frac{1}{h} \]

(83) \[\frac{v}{a} = \frac{1}{h} \]

(84) \[\frac{v}{a} = \frac{1}{h} \]

(85) \[\frac{v}{a} = \frac{1}{h} \]

(86) \[\frac{v}{a} = \frac{1}{h} \]

(87) \[\frac{v}{a} = \frac{1}{h} \]

(88) \[\frac{v}{a} = \frac{1}{h} \]

(89) \[\frac{v}{a} = \frac{1}{h} \]

(90) \[\frac{v}{a} = \frac{1}{h} \]

(91) \[\frac{v}{a} = \frac{1}{h} \]

(92) \[\frac{v}{a} = \frac{1}{h} \]

(93) \[\frac{v}{a} = \frac{1}{h} \]

(94) \[\frac{v}{a} = \frac{1}{h} \]

(95) \[\frac{v}{a} = \frac{1}{h} \]

(96) \[\frac{v}{a} = \frac{1}{h} \]

(97) \[\frac{v}{a} = \frac{1}{h} \]

(98) \[\frac{v}{a} = \frac{1}{h} \]

(99) \[\frac{v}{a} = \frac{1}{h} \]

(100) \[\frac{v}{a} = \frac{1}{h} \]
شکل ۲- نمودار سطحی افت صدا در فرکانس‌های ۲۶۰۰ تا ۸۰۰۰ هرتز

مدل رياضی
موقعیت حداکثر اثر برای یک مانع با ارتفاع ۳.۲ متر (یا یک مانع تا ارتفاع ۳ متر طول لبه بالایی قسمت (T۱) از فرکانسهای مختلف با استفاده از فرمول شماره ۵ محاسبه شد و نتایج آن در شکل ۲ ارائه گردید.

همانطور که نمودار نشان می‌دهد، در ارتباط با موقعیت کارایی حداکثر برای مانع‌های چند لبه آی بین نتایج روش تعیین مدل و معادله ریاضی ارائه شده یک همخوانی خوبی وجود دارد.

بحث و نتیجه‌گیری
دو سطح مختلف در این مطالعه مورد بررسی قرار گرفت. اگرچه مانع جاذب به‌وسیله یکشاخ کندگی
شکل ۲- موقعیت کارایی حداکثری مانع با ارتفاع ۳/۳۲۳ متر در فرکانس‌های مختلف

شکل ۳- نمودار سطحی افت صدا در فرکانس‌های ۲۵۰ تا ۸۰۰ هرتز بین ۲۵ تا ۷۵ درجه در میدان وسیعی پشت مانع مرجع