Comparison the efficiency of alum and commercial poly aluminum chloride for fluoride removal from water

R. R. Kalantary¹, S. Jorfi², A. Esrafil³, A. Ameri⁴, R. Baradar Niazi⁵, A. Ameli⁶

Abstract

Background and aims: Fluoride is released to environment naturally and via Industrial effluents. According to concentration of fluoride in potable water and its total uptake rate, can be beneficial or harmful. Due to simplicity of operation, easy access to the coagulants of alum and poly aluminum chloride and low cost, coagulation was selected for fluoride removal from water. The purpose of this study was to comparison the efficiency of alum and commercial poly aluminum chloride for fluoride removal from water.

Methods: Lab scale experiments were carried out via Jar apparatus. Variations of this study, including pH, coagulant dosage and fluoride concentration were experimented in defined conditions.

Results: Results indicate that optimum pH for both of coagulants was equal to 4. Concentrations of alum and poly Aluminum chloride for fluoride removal were 240 and 160 mg/L respectively and removal efficiency in optimum pH and dosage of coagulant were 84.2 and 84 % respectively.

Conclusion: According to data obtained from this study, it can be stated that coagulation is a suitable method for removal of fluoride from water and poly Aluminum chloride is compatible with alum.

Keywords: fluoride, coagulation, alum, poly aluminum chloride

1. (Corresponding author) Assistant Professor, Environment Department, School of Health, Iran University of Medical Sciences, Tehran, Iran. Email: roshanak_rezaeikalantari@yahoo.com
2. Ph.D student of Environmental Health. Department of Environmental Health, Tarbiat Modares University, Tehran, Iran.
3. Ph.D student of Analysis Chemistry.
4. Assistant Prof., Environment Department, School of Health, Iran University of Medical Sciences, Tehran, Iran
5&6. Environmental health expert, Environment Department, School of Health, Iran University of Medical Sciences, Tehran, Iran.
مقایسه کارایی منعکس کننده های پلی آلومینیوم کلراید نیتریت و آلوم در حذف فلوراید از آب

روشنک رضایی کلالشری: سهند جریفی؛ علی اسکندوری؛ احمد علی‌نیا؛ رفیعی پرداز نیازی؛ آرمان‌نیا

تاریخ پذیرش: 88/5/31
تاریخ برایش: 88/7/28

چکیده
چیزهای و هدف: فلوراید به طور طبیعی و همچنین از طریق پساب صنایع متنوع مربوط به میکرویژنت با مشترکهای متعددی که از آن آب و عایق کل جدب شده می‌تواند متأثر باشد. به دلیل سهولت جهش، دسترسی آسان به منعکس کننده های آلوم و پلی آلومینیوم و از آن عبانی روش انعقاد برای حدف فلوراید از آب می‌باشد. این مطالعه مقایسه کارایی منعکس کننده های پلی آلومینیوم کلراید نیتریت و آلوم در حذف فلوراید از آب می‌باشد.

مواد و روش ها: آزمایشات در مقیاس آزمایشگاهی و به وسیله دستگاه جار انجام شد. متفاوت‌های این پژوهش شامل مقدار صربه و هزینه منعکس کننده در شرایط تعیین شده مورد بررسی قرار گرفت.

پایه‌ها: نتایج آزمایشات نشان می‌دهد که pH لازم به حدف فلوراید برای هر دو منعکس کننده 4 بود. حذف آلوم و پلی آلومینیوم کلراید به‌طور همزمان به ترتیب 43 و 60 میلیگرم بر لیتر و پیش خود حذف برای هر دو منعکس کننده به‌طور همزمان به ترتیب 38 و 43 میلیگرم بر لیتر رد شود. در نتیجه گیری، با توجه به نتایج حاصل از این مطالعه می‌توان اظهار کرد که روش انعقاد روش مناسب برای حذف فلوراید از آب می‌باشد و پلی آلومینیوم کلراید در حذف فلوراید قابل قبول‌تر از آلوم می‌باشد.

کلیدواژه‌ها: فلوراید - انعقاد - آلوم - پلی آلومینیوم کلراید

مقدمه
فلوراید یک عنصر طبیعی در میان مواد معدنی، رسوبات زاولیمیالی و سیستم‌های طبیعی آب است. که از طریق آب اشامیدنی یا تغذیه از گیاهان وارد زنجیره غذایی بدن می‌شود. در مدل‌های حیاتی فلوراید، تولید گرفتگی‌های دارای خلیق پسبار، پرداخت فلورات، ساخت نیازگرک، کاهش و کاهش الکتروسیل و غیره مورد استفاده قرار می‌گیرد و از طریق پساب این صنایع به میکرویژنت منتشر می‌شود. خلل‌های این فاضلابه‌ها به آب‌های سطحی منجر می‌شود.

1- (ارائه مسئول) عضو هیئت علمی دانشگاه بهداشت، گروه مهندسی بهداشت محیط، دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران.
2- دانشجوی دکتری بهداشت محیط، دانشگاه تربیت مدرس
3- دانشجوی دکتری بهداشت محیط، دانشگاه تربیت مدرس
4- عضو هیئت علمی دانشگاه بهداشت - دانشگاه علوم پزشکی ایران
5- دانش آموخته بهداشت محیط - دانشگاه علوم پزشکی ایران
6- دانش آموخته بهداشت محیط - دانشگاه علوم پزشکی ایران

roshanak_rezaeikalantari@yahoo.com
مقایسه کارایی منعکس کننده‌های آلومینیوم ...
روش بررسی

مواد و مفهوم ها

منبع این نوع آزمایشگاهی Grade (درجه) شرکت مولکول‌های کلراید در 
میزان منحنی در شرایط طرح و توسعه صادرهات تهیه 
گردد. درجه خلخول پلی‌اکریلیم کلراید صنعتی 
درصد بود. از فلوراید سدیم (NaF) برای تهیه محلول 
امتیاز داده‌گردد. در این مطالعه 
در این مطالعه
مقایسه کارایی منعکس کننده‌های پلی آلومینیوم...

کلراید مراحل هم‌ماند مرحله قبل برای آلومینیوم تکرار شد ولی غلظت پلی آلومینیوم کلراید اضافه شده به هر یک از بشرها 0.14، 0.15، 0.12، 0.10، 0.08 میلی‌گرم در لیتر بود.

تأثیر غلظت منعکس کننده بر عملکرد انعقاد

با منظور بررسی تأثیر مرحله منعکس کننده در غلظت‌های مختلف فلوراید، ۱۵۰ میلیلیتر با غلظت‌های مختلف فلوراید (۱، ۲، ۳، ۴، ۵، ۶) در هر یک از تنظیم‌های پهپاد و ۴ میلی‌گرم در لیتر جاریت ریخته شد و برای ۱۰ دقیقه بهره‌مندی و داژ بهینه منعکس کننده که از مرحلات قبلی بدست آمده آزمایش جاریت‌ها انجام شد. پس از قرار دادن نمونه هر آن‌دان حذف فلوراید برای هر یک از منعکسکننده‌ها در غلظت‌های مختلف تعیین گردید.

روش‌های آزمایش‌گرایه

یافته‌های بهینه حذف فلوراید با استفاده از آلومینیوم و سود، توسط مداری منجر گردید. بعد از اضافه کردن معرف ها (یک سی‌سی‌سی) به محلول‌های کالیبراسیون غلظت‌های صفر تا 1.5 میلی‌گرم در لیتر فلوراید با استفاده از ۵۰۰ میلی‌گرم در لیتر تهیه گردید. سپس از یک دستگاه میکروفلوئید دور از ۳ میلی‌گرم در لیتر مصرف نشده استاندارد تهیه شد و در طول موج ۴۳ نانومتر خوانده شد. براساس جواب‌های خوانده و غلظت‌های محلول، منحنی استاندارد رسم شد، از این منحنی برای بدست آوردن غلظت نمونه‌های مجهول با جذب‌های CECIL خوانده شد. از دستگاه استیکی‌فوتومتری مدل ۴۴۴ ساخت کشور انگلستان استفاده گردیده است. همه داده‌های آزمایش‌گرایه این شده در طول مطالعات با بنیاد میانگین حسابی با حداکثر ۱ بارتاکر آزمایش‌بوده که پس از حذف داده‌های مخدوش و غلظت ثابت می‌گردد. نمونه در مراحل مختلف مطالعه برداشته شد.

پهپاد پلی‌آلومینیوم کلراید

تأثیر مرحله از مطالعات در شکل ۱ نشان داده شده است. بهینه حذف فلوراید با استفاده از آلومینیوم و سود سود، توسط مداری منجر گردید.
از دلایل مصرف بیشتری آلومینیم کلرید این امر بوده است. در مطالعاتی که توسط جوئیدو زنگ [16] و کلاب استوتن برگ [17] حذف فلوراید توسط آلوم به روش pH پیشنهاد در انعقاد مورد بررسی گرفته شده است، اما چنین مسایلی در نظر گرفته شده است که حذف pH حذف فلوراید در آب مناطق مختلف همگونی آن را می‌تواند باعث افزایش و سردرسی باشد. با توجه به اینکه در حذف فلوراید در pH جدول 6-8 برای آلومینیم مقدماتی، حذف pH می‌تواند ایجاد از اکسید آب‌های دارای pH تا حدودی خسته‌بافی مایع و آلومینیم کلرید شد، محدوده خاصی برای pH پیشنهاد می‌شود [18].

شکل 2 نشان می‌دهد که موتورین دراز آلوم در حذف فلوراید مقدار 300 mg/L و بالاتر حذف در استفاده از مقدار مذکور آلوم 7848 درصد بوده است. مقدار آلوم حالت بیش از مقدار پیشنهادی گواتیو زنگ و همکاران است که از فرایند انعقاد به همراه راکتور شیاه استفاده نمودند. مقدار پیشنهادی آلان 50 گرم آلوم به ازای هر گرم حذف فلوراید بوده است. اما با توجه به اینکه در مطالعات کوانتوم نزدیک و همکاران از فرآیند حذف غلظتی نیز استفاده شده بود [16].

غلظت فلوراید از pH به بالا کاهش می‌یابد. اما این امر در پی‌آلومینیوم کلرید مصداق نداشت و افزایش pH حذف فلوراید تا 10 مایع از سه‌تاریکان در برتر حذف آلوم به روند کلی آن نشان می‌دهد که به موازات افزایش pH حذف فلوراید تا غلظت pH = 0.7mg/L، بارزه حذف افزایشتی ایجاد کرده است.

بحث و نتیجه‌گیری

با توجه به نتایج مرحله اول مطالعه، pH معادل 4 به عنوان pH بهینه حذف فلوراید تعیین شده‌بیشترین pH حذف فلوراید در آب مناطق مختلف خصوصاً مناطق معدنی و سردرسی و با توجه به مقادیر باقیمانده فلوراید در pH می‌تواند باعث افزایش اکسید آلومینیم کلرید این امرFB در انتخاب مایعات 6-8 مایع عمل نمود. با توجه به اینکه سازی به کاهش استفاده می‌تواند در pH آلومینیم کلرید مایع به سازی و ترکیب از آلومینیم مثبت بوده است. اگر یکی از دلایل مصرف بیشتری آلومینیم کلرید این امر بوده است، مایع pH به معادل 4 به عنوان pH بهینه حذف فلوراید تعیین شخصیت‌های خاصی برای pH می‌تواند باعث افزایش pH آلومینیم کلرید باید باشد. با توجه به اینکه pH آلومینیم کلرید در pH های بالاتر بارده حذف بهتری بیشتری در pH های زیر گرفته شده است. با دلیل مصرف بیشتری مقدار مایع افزایش pH یکی از دلایل انعقاد جارویی نسبت به جدب سطحی و خشکی سازی بار می‌تواند اظهار کرد که یکی

فصلنامه

دوره 6، شماره 4، رمضان 1388

روشک رضایی کلانتری و همکاران
مقایسه کارایی منعکس‌کننده‌های آلومینیوم

حدوده مصرفی در تحقیق ارضاویلی است[14]، فلوراید باقیمانده حاصل از فرآیند انعقاد توسط پلی آلومینیوم کرایه‌نشان می‌دهد که غلظت 16 mg/L ماده منعکس کننده مذکور برای حذف فلوراید در محدوده غلفتی 0.1-10 mg/L مناسب است. تأثیر این مرحله از آزمایشات نشان می‌دهد که دارای پلی آلومینیوم کرایه‌نشان مصرفی به غلظت اولیه فلوراید بستگی دارد که با نظریه و همکاران (2003) هماهنگ است. اما ارتدمان حذف پیشره از محدوده حذف توسط مواد منعکس‌کننده است[18]، بیشترین راندمان حذف مربوط به غلظت اولیه 7 و 10 mg/L فلوراید بوده است.

به طور کلی تعیین دارای اهمیت بهداشتی و اقتصادی می‌باشد. از سوی دیگر کاربر دارای آن کم، ضمن مصرف قلیانی‌ها، از نظر دخالت آب از اثرات که این کمیت شیمیایی آپرا تحت تأثیر قرار می‌دهد. همچنین مطالعات بهداشتی رابطه مستقیم آلومینیوم با آزمایشات رادار انسان نیز دیده است. برای حذف هر گرم فلوراید در محدوده غلفتی 0.1-10 mg/L آلوم، تا 0.012 گرم پلی آلومینیوم کرایه‌نشان در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در غلظت‌های مختلف فلوراید به غلظت اولیه فلوراید بستگی داشته و بهترین در محدوده 7 و 10 mg/L فلوراید بوده است.

و فراپنی مذکور در مقایسه با فرآیند انعقاد به تهنایی یک فرآیند گران است. در تحقیق حاضر مقدار فلوراید باقیمانده در فرآیند انعقاد در محدوده قابل قبول است [1] در حالت حاضر از نتایج این آزمایش را می‌توان دارای مناسب و قابل قبول محصول نمود، ضمن اینکه مقدار پیشنهادی بین مقدار کمتر در با توجه به شکل 2 و 3 مقدار حذف و مقدار آلوم نیاز به غلظت اولیه فلوراید بستگی دارد. در محدوده غلظت اولیه 5 تا 10 mg/L آلوم، از این آلوم منفرد آگاهی به حذف هر گرم فلوراید با آزمایشات رادار انسان نیز دیده است. برای حذف هر گرم فلوراید در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در محدوده غلفتی 0.1-10 mg/L آلوم و 19.2 گرم پلی آلومینیوم کرایه‌نشان در غلظت‌های مختلف فلوراید به غلظت اولیه فلوراید بستگی داشته و بهترین در محدوده 7 و 10 mg/L فلوراید بوده است.

نتایج آزمایشات شناسی می‌دهد که در استفاده از دازل 100 میلی گرم لیتر آلوم غلظت فلوراید باقیمانده در آب در کمتر از 0.01 mg/L می‌تواند در محدوده قابل قبول برای منطقه سرسبز است[1]. با توجه به استانداردهای EPA به میزان کمتر از حداقل غلظت مجاز نیز مناسب باشد.

مقدار مصرف مقدار منعکس‌کننده منجر به تولید لجن کمتری مسترک و مشکلات ناشی از دفع لجن کمتر خواهد شد و این امر از چنین جنبه به صرفه است:
1- هزینه مواد منعکس‌کننده کاهش می‌یابد.
2- لجن کمتری تولیدشده شود.
3- مشکلات ناشی از دفع لجن به لحاظ ذهیر خسارت، حمل و نقل و هزینه‌های مربوط به آن کاهش می‌یابد.

دارای آلوم مصرفی در این مطالعه بسیار کمتر از

شکر و قدردانی
بدین وسیله از حمایت های مالی و معنوی دانشگاه علوم پزشکی ایران برای انجام طرح تحقیقاتی دانشجویی کد 276 تشكر و قدردانی به عمل می آید.

منابع

6- Zakia A., Barioub B., Mameri N., Taky M.,