Abstract
Background and aims: Identifying the costs of accidents and modeling them can encourage industries to build safety systems. Oil derivatives storage tanks are among the most important industrial facilities that are always effective in domino effects in the oil industry. Therefore, the present study investigated the economic consequences of the fire and explosion domino phenomenon in oil refinery storage tanks.
Methods: In the present study, Phast software was used to determine the heat flux, and R-statistical software and igraph R package were used to model the graph. The centrality measures (i.e., betweenness, in-closeness, out-closeness, and all-closeness)for the tank graph based on the thermal threshold of 10 kW/m2 and 15 kW/m2 were evaluated using R software.
Results: According to Dow’s fire and explosion index, the degree of hazard of these tanks was high and intense. Results showed that the lowest and the highest values of Dow’s fire and explosion index are related to kerosene (71) and pentane and naphtha gas (187.42), respectively. Evaluating the contact area in case of a domino effect showed that this effect can increase the cost of the accident up to 2 times. Also, implementing necessary safety plans such as a fire alarm system reduces the cost of accidents by 50%.
Conclusion: Using graph theory allows the graphical modeling of domino scenarios and identification of the most vulnerable tanks in terms of the trigger potential and expansion of domino effects. The most vulnerable tanks are prioritized for protective measures, such as active and inactive safety barriers. Overall, the effect of implementing safety plans in reducing fire and explosion to protect the tanks is the same as the fire alarm system.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |