Volume 18, Issue 1 (2021)                   ioh 2021, 18(1): 45-62 | Back to browse issues page

Research code: 21809-27-01-92


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golbabaei F, Habibi Mohraz M, Yarahmadi R, Sadighzadeh A, Mohammadi H, Farhang Dehghan S. COMPARISON OF FILTRATION PERFORMANCE BETWEEN NEAT AND PLASMA-TREATED PAN / MGO NANOFIBERS IN THE REMOVAL OF 10 TO 1000 NM PARTICLES. ioh 2021; 18 (1) : 4
URL: http://ioh.iums.ac.ir/article-1-2828-en.html
Shahid Beheshti University of Medical Sciences,Daneshjoo Blvd, Velenjak St., Shahid Chamran Highway , somayeh.farhang@gmail.com
Abstract:   (2205 Views)

Introduction: The present study aimed to compare the filtration performance between neat hybrid electrospun nanofibers consisting of polyacrylonitrile (PAN) polymer and magnesium oxide (MgO) nanoparticles and plasma treated ones in removing fine particles from the air stream.
Methodology: The upper surface of the nanofibers were processed by cold-plasma with a radio frequency power supply (13.56 MHz with a power of 20 watts), argon gas and operating pressure of 0.2 torr. Initial efficiency tests for numerical removal of particles have been done in accordance with standards ISO 29463 and EN 779. Pressure drop and quality factor were determined for the fabricated media. In order to confirm the presence of magnesium oxide nanoparticles in the nanofibers, X-ray diffraction pattern (XRD) was prepared. Analysis algorithms of SEM images were used to calculate the porosity of filters using MATLAB software.
Result: The mean initial efficiency of neat and plasma-treated media was 90.77 ± 6.7 % and 73.66 ± 8.86 % for collecting particles from 10 to 1000 nm, respectively. The initial mean pressure drop of the neat and treated media at the test face velocity was 78.22 ± 3.11 pa and 22.00 ± 2.33 pa, respectively, and their mean quality factor for collecting 10 to 1000 nm particles was 0.029 and 0.010 (Pascal/1), respectively.
Conclusion: By performing plasma treatment, collection efficiency of particle decreased, but with a significant decrease in pressure drop, so neat media ultimately presented the higher score of quality factor than treated one
Article number: 4
Full-Text [PDF 2305 kb]   (896 Downloads)    
Type of Study: Research | Subject: New air purification technologies (nano and plasma)
Received: 2019/07/19 | Accepted: 2020/05/3 | Published: 2021/01/2

References
1. 1. Kenry, Lim CT: Nanofiber technology: current status and emerging developments. Progress in Polymer Science 2017, 70:1-17. [DOI:10.1016/j.progpolymsci.2017.03.002]
2. Wang G, Yu D, Kelkar AD, Zhang L: Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science 2017, 75:73-107. [DOI:10.1016/j.progpolymsci.2017.08.002]
3. Tao D, Wei Q, Cai Y, Xu Q, Sun L: Functionalization of polyamide 6 nanofibers by electroless deposition of copper. Journal of Coatings Technology and Research 2008, 5(3):399-403. [DOI:10.1007/s11998-008-9118-4]
4. Balamurugan R, Sundarrajan S, Ramakrishna S: Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 2011, 1(3):232-248. [DOI:10.3390/membranes1030232]
5. Park JH, Yoon KY, Na H, Kim YS, Hwang J, Kim J, Yoon YH: Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Science of the total environment 2011, 409(19):4132-4138. [DOI:10.1016/j.scitotenv.2011.04.060]
6. Dehghan SF, Golbabaei F, Sedigh-Zadeh A, Mohammadi H: Possibility of using plasma-processed hybrid nanofibers to remove toluene in air stream. Journal of Health and Safety at Work 2019, 9(3):179-190.
7. Vitchuli N, Shi Q, Nowak J, Nawalakhe R, Sieber M, Bourham M, McCord M, Zhang X: Plasma-electrospinning hybrid process and plasma pretreatment to improve adhesive properties of nanofibers on fabric surface. Plasma Chemistry and Plasma Processing 2012, 32(2):275-291. [DOI:10.1007/s11090-011-9341-0]
8. Kamlangkla K, Paosawatyanyong B, Pavarajarn V, Hodak JH, Hodak SK: Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment. Applied Surface Science 2010, 256(20):5888-5897. [DOI:10.1016/j.apsusc.2010.03.070]
9. Dehghan S, Golbabaei F, Maddah B, Latifi M, Pezeshk H, Hasanzadeh M, Akbar F: Optimization of Electrospinning Parameters for PAN-MgO Nanofibers Applied in Air Filtration Somayeh. Journal of the Air & Waste Management Association 2016, 66(9):912-921. [DOI:10.1080/10962247.2016.1162228]
10. ISO: ISO 29463: High-efficiency filters and filter media for removing particles in air-- Part 3: Testing flat sheet filter media. In. Geneva: International Organization for Standardization; 2011.
11. ASHREA: ASHREA 52.2: Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size. In. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.; 2006.
12. Habibi Mohraz M, Golbabaei F, Je Yu I, Sedigh Zadeh A, Mansournia MA, Farhang Dehghan S: Investigating effective parameters on the nanoparticles air filtration using Polyurethane nanofiber mats. Health and Safety at Work 2018, 8(1):29-42.
13. Matulevicius J, Kliucininkas L, Martuzevicius D, Krugly E, Tichonovas M, Baltrusaitis J: Design and characterization of electrospun polyamide nanofiber media for air filtration applications. Journal of nanomaterials 2014, 2014:14. [DOI:10.1155/2014/859656]
14. Dehghan S, Maddah B, Golbabaei F: The Development of Nanofibrous Media Filter Containing Nanoparticles for Removing Particles from Air Stream. Iranian Journal of Health and Environment 2016, 8(4):509-524.
15. Dehghan SF, Golbaaei F, Maddah B, Yarahmadi R, Zadeh AS: Experimental Investigations on electrospun mat production: for use in high-performance air filters. International Journal of Occupational Hygiene 2015, 7(3):110-118.
16. Bettencourt da Silva R, Williams A: Eurachem/CITAC Guide: Setting and Using Target Uncertainty
17. in Chemical Measurement; 2015.
18. Shao C, Guan H, Liu Y, Mu R: MgO nanofibres via an electrospinning technique. Journal of materials science 2006, 41(12):3821-3824. [DOI:10.1007/s10853-005-5623-3]
19. Dehghan SF, Golbabaei, F.2 , Mousavi, T2, Mohammadi, H 2, Kohneshahri, M.H.2 and Bakhtiari, R.3: Production of nanofibers containing magnesium oxide nanoparticles for removing bioaerosol. Pollution 2020, 6(1):185-196.
20. Bao L, Seki K, Niinuma H, Otani Y, Balgis R, Ogi T, Gradon L, Okuyama K: Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Purification Technology 2016, 159:100-107. [DOI:10.1016/j.seppur.2015.12.045]
21. Wang J, Kim SC, Pui DY: Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of Aerosol Science 2008, 39(4):323-334. [DOI:10.1016/j.jaerosci.2007.12.003]
22. Brown RC: Air filtration. London: Pergamon Press; 1993.
23. Hosseini S, Tafreshi HV: Modeling permeability of 3-D nanofiber media in slip flow regime. Chemical Engineering Science 2010, 65(6):2249-2254. [DOI:10.1016/j.ces.2009.12.002]
24. Karwa AN, Tatarchuk BJ: Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix. Separation and purification technology 2012, 87:84-94. [DOI:10.1016/j.seppur.2011.11.026]
25. Liu J, Zeng B, Wu Z, Zhu J, Liu X: Improved field emission property of graphene paper by plasma treatment. Applied Physics Letters 2010, 97(3):033109. [DOI:10.1063/1.3467042]
26. Wei Q: Surface characterization of plasma-treated polypropylene fibers. Materials Characterization 2004, 52(3):231-235. [DOI:10.1016/j.matchar.2004.05.003]
27. Wang N, Zhu Z, Sheng J, Al-Deyab SS, Yu J, Ding B: Superamphiphobic nanofibrous membranes for effective filtration of fine particles. Journal of colloid and interface science 2014, 428:41-48. [DOI:10.1016/j.jcis.2014.04.026]
28. Moradi G, Sedighzadeh A, Yarahmadi R, Bakand S, Farshad A, Rezaeifard B: Synthesis of nano-fibrous mats using electrospinning method and determining their efficiency for nanoaerososls removal. Iran Occupational Health 2014, 11(4):1-11.
29. Hutten I: Handbook of Nonwoven Filter Media. Oxford Elsevier; 2007. [DOI:10.1016/B978-185617441-1/50016-0]
30. Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZ, Dzenis YA: Simultaneously strong and tough ultrafine continuous nanofibers. ACS nano 2013, 7(4):3324-3331. [DOI:10.1021/nn400028p]
31. Zhang Q, Welch J, Park H, Wu C-Y, Sigmund W, Marijnissen JC: Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. Journal of Aerosol Science 2010, 41(2):230-236. [DOI:10.1016/j.jaerosci.2009.10.001]
32. Yu X, Xiang H, Long Y, Zhao N, Zhang X, Xu J: Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Materials Letters 2010, 64(22):2407-2409. [DOI:10.1016/j.matlet.2010.08.006]
33. Nataraj S, Yang K, Aminabhavi T: Polyacrylonitrile-based nanofibers-A state-of-the-art review. Progress in polymer science 2012, 37(3):487-513. [DOI:10.1016/j.progpolymsci.2011.07.001]
34. Chen H-M, Yu D-G: An elevated temperature electrospinning process for preparing acyclovir-loaded PAN ultrafine fibers. Journal of Materials Processing Technology 2010, 210(12):1551-1555. [DOI:10.1016/j.jmatprotec.2010.05.001]
35. Ji L, Zhang X: Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters 2008, 62(14):2161-2164. [DOI:10.1016/j.matlet.2007.11.051]
36. Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T: Next-generation fibrous media for water treatment. Mrs Bulletin 2008, 33(1):21-26. [DOI:10.1557/mrs2008.10]
37. Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K: Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and purification technology 2010, 75(3):340-345. [DOI:10.1016/j.seppur.2010.09.002]
38. Leung WW-F, Hung C-H, Yuen P-T: Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separation and purification technology 2010, 71(1):30-37. [DOI:10.1016/j.seppur.2009.10.017]
39. Podgórski A, Bałazy A, Gradoń L: Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science 2006, 61(20):6804-6815. [DOI:10.1016/j.ces.2006.07.022]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb