Volume 18, Issue 1 (2021)                   ioh 2021, 18(1): 1-17 | Back to browse issues page

Research code: کدرهگیری رساله دکتری در ایرانداک:1494301
Ethics code: IR.MODARES.REC.1398.046


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samaei S E, Asilian Mahabadi H, Mousavi S M, Khavanin A, Faridan M. Optimization and sound absorption modeling in Yucca Gloriosa natural fiber composite. ioh 2021; 18 (1) : 1
URL: http://ioh.iums.ac.ir/article-1-3014-en.html
Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran , asilia_h@modares.ac.ir
Abstract:   (2582 Views)
Introduction: Nowadays, the acoustic behavior analysis of natural fibers composites has received increasing attention by researchers. In this regard, the present study aimed to optimize and model the sound absorption behavior of composites made of Yucca Gloriosa (YG) fiber via using a mathematical modeling approach.
Methodology: In this experimental cross-sectional study, in order to fabricate the natural acoustic composites, the alkaline treatment of the fibers was employed. In this study, the design of experiments and determination of the optimum amount of alkaline treatment parameters (NaOH concentration and immersion time) to improve the sound absorption was performed by Response Surface Methodology (RSM).  Moreover, the sound absorption coefficient (SAC) of YG fiber was measured by an impedance tube system (ISO10534-2 standard). The applicability of Delany-Bazley (DB) and Miki analytical models for predicting the sound absorption coefficients of the natural composites by coding formulas in MATLAB software was investigated as well.
Result: Comparison of the obtained SAC showed that this value of optimized was higher than untreated composite at all frequencies, and the sound absorption average (SAA) index increased by 18.92%, particularly when compared to the raw composites. Also, good agreement was found between the results from the empirical models and the experimental results in the low and mid-frequency range of one-third octave band.
Conclusion: the optimization of alkaline treatment and prediction of SAC by empirical model, with regard to the prominent benefits of natural fibers and the wide use of these fibers, is considered as an acceptable strategy for acoustic applications (industries and buildings).
Article number: 1
Full-Text [PDF 2346 kb]   (1774 Downloads)    
Type of Study: Applicable | Subject: Noise
Received: 2020/01/5 | Accepted: 2020/08/16 | Published: 2021/04/6

References
1. 1. Taban E, Soltani P, Berardi U, Putra A, Mousavi SM, Faridan M, et al. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Building and Environment. 2020;180:107087. [DOI:10.1016/j.buildenv.2020.107087]
2. Arenas JP, Crocker MJ. Recent trends in porous sound-absorbing materials. Sound & vibration. 2010;44(7):12-8.
3. Ekici B, Kentli A, Küçük H. Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics. 2012;37(4):515-20. [DOI:10.2478/v10168-012-0052-1]
4. Asdrubali F, D'Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies. 2015;4:1-17. [DOI:10.1016/j.susmat.2015.05.002]
5. Samaei SE, Asilian Mahabadi H, Mousavi SM, Khavanin A, Faridan M. Effect of Alkali Treatment on Diameter and Tensile Properties of Yucca Gloriosa Fiber Using Response Surface Methodology. Journal of Natural Fibers. 2020:1-14. [DOI:10.1080/15440478.2020.1818348]
6. Sullins T, Pillay S, Komus A, Ning H. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering. 2017;114:15-22. [DOI:10.1016/j.compositesb.2017.02.001]
7. Nor MJM, Ayub M, Zulkifli R, Amin N, Fouladi MH. Effect of different factors on the acoustic absorption of coir fiber. Journal of Applied Sciences. 2010;10(22):2887-92. [DOI:10.3923/jas.2010.2887.2892]
8. Mamtaz H, Fouladi MH, Al-Atabi M, Narayana Namasivayam S. Acoustic absorption of natural fiber composites. Journal of Engineering. 2016;2016. [DOI:10.1155/2016/5836107]
9. Cao L, Fu Q, Si Y, Ding B, Yu J. Porous materials for sound absorption. Composites Communications. 2018;10:25-35. [DOI:10.1016/j.coco.2018.05.001]
10. Zhao X-D, Yu Y-J, Wu Y-J. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Applied Acoustics. 2016;114:92-8. [DOI:10.1016/j.apacoust.2016.07.013]
11. Jayamani E, Hamdan S, editors. Sound absorption coefficients natural fibre reinforced composites. Advanced Materials Research; 2013: Trans Tech Publ. [DOI:10.4028/www.scientific.net/AMR.701.53]
12. Rahimabady M, Statharas EC, Yao K, Sharifzadeh Mirshekarloo M, Chen S, Tay FEH. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption. Applied Physics Letters. 2017;111(24):241601. [DOI:10.1063/1.5010743]
13. Lim Z, Putra A, Nor MJM, Yaakob M. Sound absorption performance of natural kenaf fibres. Applied Acoustics. 2018;130:107-14. [DOI:10.1016/j.apacoust.2017.09.012]
14. Yahaya R, Sapuan S, Jawaid M, Leman Z, Zainudin E. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Materials & Design. 2015;67:173-9. [DOI:10.1016/j.matdes.2014.11.024]
15. Kalia S, Kaith B, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polymer Engineering & Science. 2009;49(7):1253-72. [DOI:10.1002/pen.21328]
16. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment. 2007;15(1):25-33. [DOI:10.1007/s10924-006-0042-3]
17. Othmani C, Taktak M, Zein A, Hentati T, Elnady T, Fakhfakh T, et al. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics. 2016;109:90-6. [DOI:10.1016/j.apacoust.2016.02.005]
18. Berardi U, Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment. 2015;94:840-52. [DOI:10.1016/j.buildenv.2015.05.029]
19. Martellotta F, Cannavale A, De Matteis V, Ayr U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics. 2018;141:71-8. [DOI:10.1016/j.apacoust.2018.06.022]
20. Taban E, Khavanin A, Ohadi A, Putra A, Jafari AJ, Faridan M, et al. Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment. 2019;161:106274. [DOI:10.1016/j.buildenv.2019.106274]
21. Balbaşı M. Application of full factorial design method to silicalite synthesis. Materials Research Bulletin. 2013;48(8):2908-14. [DOI:10.1016/j.materresbull.2013.04.040]
22. Hashim MY, Amin AM, Marwah OMF, Othman MH, Yunus MRM, Huat NC, editors. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. Journal of Physics: Conference Series; 2017: IOP Publishing. [DOI:10.1088/1742-6596/914/1/012030]
23. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015). 2015;66:246-57. [DOI:10.1016/j.matdes.2014.10.067]
24. Akhtar MN, Sulong AB, Radzi MF, Ismail N, Raza M, Muhamad N, et al. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International. 2016;26(6):657-64. [DOI:10.1016/j.pnsc.2016.12.004]
25. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials. 2014;55:103-13. [DOI:10.1016/j.conbuildmat.2014.01.036]
26. Fiore V, Di Bella G, Valenza A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering. 2015;68:14-21. [DOI:10.1016/j.compositesb.2014.08.025]
27. Taban E, Khavanin A, Ohadi A. Experimental study and modelling of date palm fibre composite acoustic behaviour using differential evolution algorithm. Iran Occupational Health. 2019;16(2):94-108.
28. Standard B. Acoustics-determination of sound absorption coefficient and impedance in impedance tubes-part 2: Transfer-function method. BS EN ISO. 2001:10534-2.
29. Miki Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E). 1990;11(1):19-24. [DOI:10.1250/ast.11.19]
30. Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics. 2005;66(12):1383-98. [DOI:10.1016/j.apacoust.2005.04.008]
31. Oliva D, Hongisto V. Sound absorption of porous materials-Accuracy of prediction methods. Applied Acoustics. 2013;74(12):1473-9. [DOI:10.1016/j.apacoust.2013.06.004]
32. Delany M, Bazley E. Acoustical properties of fibrous absorbent materials. Applied acoustics. 1970;3(2):105-16. [DOI:10.1016/0003-682X(70)90031-9]
33. Chen X, Du W, Liu D. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal. 2008;40(3):423-9. [DOI:10.1016/j.bej.2008.01.012]
34. Cox T, d'Antonio P. Acoustic absorbers and diffusers: theory, design and application: Crc Press; 2016.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb