1. Almurib HA, Al-Qrimli HF, Kumar N, editors. A review of application industrial robotic design. 2011 Ninth International Conference on ICT and Knowledge Engineering; 2012: IEEE. [
DOI:10.1109/ICTKE.2012.6152387]
2. Council NR. Virtual reality: scientific and technological challenges: National Academies Press; 1995.
3. Luo J, He W, Yang C. Combined perception, control, and learning for teleoperation: key technologies, applications, and challenges. Cognitive Computation and Systems. 2020;2(2):33-43. [
DOI:10.1049/ccs.2020.0005]
4. Laurikkala M, Suzuki S, Vilkko M, editors. Predicting operator's cognitive and motion skills from joystick inputs. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society; 2016: IEEE. [
DOI:10.1109/IECON.2016.7792994]
5. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28(1):166-85. [
DOI:10.1152/jn.1965.28.1.166] [
PMID]
6. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. Front Neurosci. 2017;11:641. [
DOI:10.3389/fnins.2017.00641] [
PMID] [
]
7. Reinhart RM, Cosman JD, Fukuda K, Woodman GF. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Attention, Perception, & Psychophysics. 2017;79:3-23. [
DOI:10.3758/s13414-016-1224-2] [
PMID] [
]
8. Wilson MA, Greenwell D, Meek AW, Poston B, Riley ZA. Neuroenhancement of a dexterous motor task with anodal tDCS. Brain Research. 2022;1790:147993. [
DOI:10.1016/j.brainres.2022.147993] [
PMID]
9. Cuypers K, Leenus DJ, van den Berg FE, Nitsche MA, Thijs H, Wenderoth N, et al. Is motor learning mediated by tDCS intensity? PLoS One. 2013;8(6):e67344. [
DOI:10.1371/journal.pone.0067344] [
PMID] [
]
10. Rumpf J-J, Wegscheider M, Hinselmann K, Fricke C, King BR, Weise D, et al. Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging. 2017;49:1-8. [
DOI:10.1016/j.neurobiolaging.2016.09.003] [
PMID]
11. Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, et al. The impact of transcranial direct current stimulation on upper-limb motor performance in healthy adults: a systematic review and meta-analysis. Front Neurosci. 2019;13:1213. [
DOI:10.3389/fnins.2019.01213] [
PMID] [
]
12. Chen J, McCulloch A, Kim H, Kim T, Rhee J, Verwey WB, et al. Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Exp Brain Res. 2020;238:29-37. [
DOI:10.1007/s00221-019-05697-7] [
PMID]
13. Reis J, Fischer JT, Prichard G, Weiller C, Cohen LG, Fritsch B. Time-but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb Cortex. 2015;25(1):109-17. [
DOI:10.1093/cercor/bht208] [
PMID] [
]
14. Stagg C, Jayaram G, Pastor D, Kincses Z, Matthews P, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800-4. [
DOI:10.1016/j.neuropsychologia.2011.02.009] [
PMID] [
]
15. Weightman M, Brittain J-S, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul. 2020;13(3):707-16. [
DOI:10.1016/j.brs.2020.02.013] [
PMID]
16. Sheridan TB. Human-robot interaction: status and challenges. Hum Factors. 2016;58(4):525-32. [
DOI:10.1177/0018720816644364] [
PMID]
17. Parsons HM, Kearsley GP. Robotics and human factors: Current status and future prospects. Hum Factors. 1982;24(5):535-52. [
DOI:10.1177/001872088202400504]
18. Nof SY, Knight Jr JL, Salvendy G. Effective utilization of industrial robots-A job and skills analysis approach. AIIE Transactions. 1980;12(3):216-25. [
DOI:10.1080/05695558008974509]
19. Javaid M, Haleem A, Singh RP, Suman R. Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics. 2021;1:58-75. [
DOI:10.1016/j.cogr.2021.06.001]
20. Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, Parasuraman R. A meta-analysis of factors affecting trust in human-robot interaction. Hum Factors. 2011;53(5):517-27. [
DOI:10.1177/0018720811417254] [
PMID]
21. Chen JY, Haas EC, Barnes MJ. Human performance issues and user interface design for teleoperated robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007;37(6):1231-45. [
DOI:10.1109/TSMCC.2007.905819]
22. Doisy G, Ronen A, Edan Y. Comparison of three different techniques for camera and motion control of a teleoperated robot. Applied ergonomics. 2017;58:527-34. [
DOI:10.1016/j.apergo.2016.05.001] [
PMID]
23. Farrugia M, Saliba MA. Optimisation of anthropomorphic robot hand design through human manual dexterity testing. 2006.
24. Muñoz Morgado LM. Improving ergonomics in teleoperation. Journal of Ergonomics. 2014;4(3):e125-e.
25. Neves TdC, Garcia PPNS. Use of manual dexterity tests in dental education. Journal of advances in medicine and medical research. 2018;27(12):1-7. [
DOI:10.9734/JAMMR/2018/44916]
26. Ghasemian M, Taheri H, Saberi Kakhki A, Ghoshuni M. Electroencephalography pattern variations during motor skill acquisition. Perceptual and Motor Skills. 2017;124(6):1069-84. [
DOI:10.1177/0031512517727404] [
PMID]
27. Huysmans MA, De Looze MP, Hoozemans MJ, Van der Beek AJ, Van Dieen JH. The effect of joystick handle size and gain at two levels of required precision on performance and physical load on crane operators. Ergonomics. 2006;49(11):1021-35. [
DOI:10.1080/00140130500424102] [
PMID]
28. de Brouwer AJ, Flanagan JR, Spering M. Functional use of eye movements for an acting system. Trends Cogn Sci. 2021;25(3):252-63. [
DOI:10.1016/j.tics.2020.12.006] [
PMID]
29. Land MF, Hayhoe M. In what ways do eye movements contribute to everyday activities? Vision Res. 2001;41(25-26):3559-65. [
DOI:10.1016/S0042-6989(01)00102-X] [
PMID]
30. Schroeder PA, Plewnia C. Beneficial effects of cathodal transcranial direct current stimulation (tDCS) on cognitive performance. Journal of Cognitive Enhancement. 2017;1:5-9. [
DOI:10.1007/s41465-016-0005-0]
31. Robert-Lachaine X, Corbeil P, Muller A, Vallée-Marcotte J, Mecheri H, Denis D, et al. Combined influence of transfer distance, pace, handled mass and box height on spine loading and posture. Applied ergonomics. 2021;93:103377. [
DOI:10.1016/j.apergo.2021.103377] [
PMID]
32. Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? The World Journal of Biological Psychiatry. 2014;15(4):261-75. [
DOI:10.3109/15622975.2013.876514] [
PMID]
33. Yancosek KE, Howell D. A narrative review of dexterity assessments. Journal of Hand Therapy. 2009;22(3):258-70. [
DOI:10.1016/j.jht.2008.11.004] [
PMID]
34. Chan T. An investigation of finger and manual dexterity. Perceptual and Motor Skills. 2000;90(2):537-42. [
DOI:10.2466/pms.2000.90.2.537] [
PMID]
35. Bornheim S, Croisier J-L, Maquet P, Kaux J-F. Proposal of a new transcranial direct current stimulation safety screening tool. Am J Phys Med Rehabil. 2019;98(7):e77-e8. [
DOI:10.1097/PHM.0000000000001096] [
PMID]
36. Tiffin J, Asher EJ. The Purdue Pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32(3):234. [
DOI:10.1037/h0061266] [
PMID]
37. Brito G, Santos-Morales TR. Developmental norms for the Gardner Steadiness Test and the Purdue Pegboard: a study with children of a metropolitan school in Brazil. Brazilian Journal of Medical and Biological Research. 2002;35:931-49. [
DOI:10.1590/S0100-879X2002000800011] [
PMID]
38. Poyraz Findik OT, Erdogdu AB, Fadiloglu E. Motor skills in children with specific learning disorder: A controlled study. Dusunen Adam: Journal of Psychiatry & Neurological Sciences. 2022;35(2). [
DOI:10.14744/DAJPNS.2022.00181]
39. Sandrini M, Fertonani A, Cohen LG, Miniussi C. Double dissociation of working memory load effects induced by bilateral parietal modulation. Neuropsychologia. 2012;50(3):396-402. [
DOI:10.1016/j.neuropsychologia.2011.12.011] [
PMID] [
]
40. Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006;404(1-2):232-6. [
DOI:10.1016/j.neulet.2006.05.051] [
PMID]
41. Kwon YH, Kang KW, Son SM, Lee NK. Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty? Neural Regeneration Research. 2015;10(3):463. [
DOI:10.4103/1673-5374.153697] [
PMID] [
]
42. Wu Y-J, Tseng P, Chang C-F, Pai M-C, Hsu K-S, Lin C-C, et al. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain Cogn. 2014;91:87-94. [
DOI:10.1016/j.bandc.2014.09.002] [
PMID]
43. Uehara K, Coxon JP, Byblow WD. Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLoS One. 2015;10(3):e0122434. [
DOI:10.1371/journal.pone.0122434] [
PMID] [
]
44. Laakso I, Mikkonen M, Koyama S, Hirata A, Tanaka S. Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci Rep. 2019;9(1):626. [
DOI:10.1038/s41598-018-37226-x] [
PMID] [
]
45. Wu D, Zhou Y, Lv H, Liu N, Zhang P. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia. 2021;156:107854. [
DOI:10.1016/j.neuropsychologia.2021.107854] [
PMID]
46. Kuo M-F, Paulus W, Nitsche MA. Sex differences in cortical neuroplasticity in humans. Neuroreport. 2006;17(16):1703-7. [
DOI:10.1097/01.wnr.0000239955.68319.c2] [
PMID]
47. Chaieb L, Antal A, Paulus W. Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis Neurosci. 2008;25(1):77-81. [
DOI:10.1017/S0952523808080097] [
PMID]
48. Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors. Brain Sciences. 2022;12(5):522. [
DOI:10.3390/brainsci12050522] [
PMID] [
]
49. Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Frontiers in psychiatry. 2012;3:81. [
DOI:10.3389/fpsyt.2012.00081] [
PMID] [
]