Volume 21, Issue 1 (2024)                   ioh 2024, 21(1): 424-441 | Back to browse issues page

Research code: 22833
Ethics code: IR.IUMS.REC.1401.102

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ziafati S, Ghasemi M, Garosi E, Hosseini Baharanchi F S, Sharifi I. The effect of transcranial Direct Current Stimulation (tDCS) on fine motor skill of hand in a human-robot interactive task. ioh 2024; 21 (1) :424-441
URL: http://ioh.iums.ac.ir/article-1-3617-en.html
Iran University of Medical Sciences , eh.garosi@gmail.com
Abstract:   (829 Views)
Introduction: Despite the significant advances in robotics in industrial, medical, military, and service fields, the role of human agent for optimal control of robots is still important. In this regard, anodal transcranial Direct Current Stimulation (tDCS) is proposed as an intervention with the potential to improve cognitive-motor performance in the field of human-robot interaction. The study aim to explore how anodal tDCS could improve fine motor skill in a task that involved interacting with a robotic arm.
 Method: In this laboratory study, 40 healthy adults were asked to perform an object transfer task by a robotic arm in test sessions with sham (control group) and real (intervention group) anodal tDCS. Before and after sham and real stimulation, the the intelligent circuit of the robotic arm recorded the performance of the participants by such indices including the number of errors (transfer, return and total error), error duration, number of transferred objects, and number of correct transferred objects. The effects of anodal tDCS on the changes in performance indicators between and within the study groups (difference between pre and post anodal tDCS) were compared considering the significance level of p<0.05.
Results: The within-group comparison showed that the number of transferred objects and the number of return errors before and after anodal tDCS (real and sham) had a significant improvement trend. Also, the error duration and the number of correct transferred objects were significant for real and sham stimulation, respectively. However, the comparison of the mean differences of post-test and pre-test scores for all variables of the study indicated no significant statistical difference between the intervention and control groups. 
Conclusion: The results suggest that anodal tDCS did not have a specific effect on hand motor skill in a human-robot interactive task, but rather a general effect on the learning and performance of the task. This implies that anodal tDCS may not be a suitable intervention for enhancing fine manual motor control and coordination with a robotic arm, but rather for improving cognitive-motor processes involved in the task. This study contributes to the understanding of the potential applications of anodal tDCS in the field of human-robot interaction.
 
Full-Text [PDF 1054 kb]   (392 Downloads)    
Type of Study: Research | Subject: Ergonomics
Received: 2024/01/31 | Accepted: 2024/11/16 | Published: 2024/05/30

References
1. Almurib HA, Al-Qrimli HF, Kumar N, editors. A review of application industrial robotic design. 2011 Ninth International Conference on ICT and Knowledge Engineering; 2012: IEEE. [DOI:10.1109/ICTKE.2012.6152387]
2. Council NR. Virtual reality: scientific and technological challenges: National Academies Press; 1995.
3. Luo J, He W, Yang C. Combined perception, control, and learning for teleoperation: key technologies, applications, and challenges. Cognitive Computation and Systems. 2020;2(2):33-43. [DOI:10.1049/ccs.2020.0005]
4. Laurikkala M, Suzuki S, Vilkko M, editors. Predicting operator's cognitive and motion skills from joystick inputs. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society; 2016: IEEE. [DOI:10.1109/IECON.2016.7792994]
5. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28(1):166-85. [DOI:10.1152/jn.1965.28.1.166] [PMID]
6. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. Front Neurosci. 2017;11:641. [DOI:10.3389/fnins.2017.00641] [PMID] []
7. Reinhart RM, Cosman JD, Fukuda K, Woodman GF. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Attention, Perception, & Psychophysics. 2017;79:3-23. [DOI:10.3758/s13414-016-1224-2] [PMID] []
8. Wilson MA, Greenwell D, Meek AW, Poston B, Riley ZA. Neuroenhancement of a dexterous motor task with anodal tDCS. Brain Research. 2022;1790:147993. [DOI:10.1016/j.brainres.2022.147993] [PMID]
9. Cuypers K, Leenus DJ, van den Berg FE, Nitsche MA, Thijs H, Wenderoth N, et al. Is motor learning mediated by tDCS intensity? PLoS One. 2013;8(6):e67344. [DOI:10.1371/journal.pone.0067344] [PMID] []
10. Rumpf J-J, Wegscheider M, Hinselmann K, Fricke C, King BR, Weise D, et al. Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging. 2017;49:1-8. [DOI:10.1016/j.neurobiolaging.2016.09.003] [PMID]
11. Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, et al. The impact of transcranial direct current stimulation on upper-limb motor performance in healthy adults: a systematic review and meta-analysis. Front Neurosci. 2019;13:1213. [DOI:10.3389/fnins.2019.01213] [PMID] []
12. Chen J, McCulloch A, Kim H, Kim T, Rhee J, Verwey WB, et al. Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Exp Brain Res. 2020;238:29-37. [DOI:10.1007/s00221-019-05697-7] [PMID]
13. Reis J, Fischer JT, Prichard G, Weiller C, Cohen LG, Fritsch B. Time-but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb Cortex. 2015;25(1):109-17. [DOI:10.1093/cercor/bht208] [PMID] []
14. Stagg C, Jayaram G, Pastor D, Kincses Z, Matthews P, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800-4. [DOI:10.1016/j.neuropsychologia.2011.02.009] [PMID] []
15. Weightman M, Brittain J-S, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul. 2020;13(3):707-16. [DOI:10.1016/j.brs.2020.02.013] [PMID]
16. Sheridan TB. Human-robot interaction: status and challenges. Hum Factors. 2016;58(4):525-32. [DOI:10.1177/0018720816644364] [PMID]
17. Parsons HM, Kearsley GP. Robotics and human factors: Current status and future prospects. Hum Factors. 1982;24(5):535-52. [DOI:10.1177/001872088202400504]
18. Nof SY, Knight Jr JL, Salvendy G. Effective utilization of industrial robots-A job and skills analysis approach. AIIE Transactions. 1980;12(3):216-25. [DOI:10.1080/05695558008974509]
19. Javaid M, Haleem A, Singh RP, Suman R. Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics. 2021;1:58-75. [DOI:10.1016/j.cogr.2021.06.001]
20. Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, Parasuraman R. A meta-analysis of factors affecting trust in human-robot interaction. Hum Factors. 2011;53(5):517-27. [DOI:10.1177/0018720811417254] [PMID]
21. Chen JY, Haas EC, Barnes MJ. Human performance issues and user interface design for teleoperated robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007;37(6):1231-45. [DOI:10.1109/TSMCC.2007.905819]
22. Doisy G, Ronen A, Edan Y. Comparison of three different techniques for camera and motion control of a teleoperated robot. Applied ergonomics. 2017;58:527-34. [DOI:10.1016/j.apergo.2016.05.001] [PMID]
23. Farrugia M, Saliba MA. Optimisation of anthropomorphic robot hand design through human manual dexterity testing. 2006.
24. Muñoz Morgado LM. Improving ergonomics in teleoperation. Journal of Ergonomics. 2014;4(3):e125-e.
25. Neves TdC, Garcia PPNS. Use of manual dexterity tests in dental education. Journal of advances in medicine and medical research. 2018;27(12):1-7. [DOI:10.9734/JAMMR/2018/44916]
26. Ghasemian M, Taheri H, Saberi Kakhki A, Ghoshuni M. Electroencephalography pattern variations during motor skill acquisition. Perceptual and Motor Skills. 2017;124(6):1069-84. [DOI:10.1177/0031512517727404] [PMID]
27. Huysmans MA, De Looze MP, Hoozemans MJ, Van der Beek AJ, Van Dieen JH. The effect of joystick handle size and gain at two levels of required precision on performance and physical load on crane operators. Ergonomics. 2006;49(11):1021-35. [DOI:10.1080/00140130500424102] [PMID]
28. de Brouwer AJ, Flanagan JR, Spering M. Functional use of eye movements for an acting system. Trends Cogn Sci. 2021;25(3):252-63. [DOI:10.1016/j.tics.2020.12.006] [PMID]
29. Land MF, Hayhoe M. In what ways do eye movements contribute to everyday activities? Vision Res. 2001;41(25-26):3559-65. [DOI:10.1016/S0042-6989(01)00102-X] [PMID]
30. Schroeder PA, Plewnia C. Beneficial effects of cathodal transcranial direct current stimulation (tDCS) on cognitive performance. Journal of Cognitive Enhancement. 2017;1:5-9. [DOI:10.1007/s41465-016-0005-0]
31. Robert-Lachaine X, Corbeil P, Muller A, Vallée-Marcotte J, Mecheri H, Denis D, et al. Combined influence of transfer distance, pace, handled mass and box height on spine loading and posture. Applied ergonomics. 2021;93:103377. [DOI:10.1016/j.apergo.2021.103377] [PMID]
32. Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? The World Journal of Biological Psychiatry. 2014;15(4):261-75. [DOI:10.3109/15622975.2013.876514] [PMID]
33. Yancosek KE, Howell D. A narrative review of dexterity assessments. Journal of Hand Therapy. 2009;22(3):258-70. [DOI:10.1016/j.jht.2008.11.004] [PMID]
34. Chan T. An investigation of finger and manual dexterity. Perceptual and Motor Skills. 2000;90(2):537-42. [DOI:10.2466/pms.2000.90.2.537] [PMID]
35. Bornheim S, Croisier J-L, Maquet P, Kaux J-F. Proposal of a new transcranial direct current stimulation safety screening tool. Am J Phys Med Rehabil. 2019;98(7):e77-e8. [DOI:10.1097/PHM.0000000000001096] [PMID]
36. Tiffin J, Asher EJ. The Purdue Pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32(3):234. [DOI:10.1037/h0061266] [PMID]
37. Brito G, Santos-Morales TR. Developmental norms for the Gardner Steadiness Test and the Purdue Pegboard: a study with children of a metropolitan school in Brazil. Brazilian Journal of Medical and Biological Research. 2002;35:931-49. [DOI:10.1590/S0100-879X2002000800011] [PMID]
38. Poyraz Findik OT, Erdogdu AB, Fadiloglu E. Motor skills in children with specific learning disorder: A controlled study. Dusunen Adam: Journal of Psychiatry & Neurological Sciences. 2022;35(2). [DOI:10.14744/DAJPNS.2022.00181]
39. Sandrini M, Fertonani A, Cohen LG, Miniussi C. Double dissociation of working memory load effects induced by bilateral parietal modulation. Neuropsychologia. 2012;50(3):396-402. [DOI:10.1016/j.neuropsychologia.2011.12.011] [PMID] []
40. Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006;404(1-2):232-6. [DOI:10.1016/j.neulet.2006.05.051] [PMID]
41. Kwon YH, Kang KW, Son SM, Lee NK. Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty? Neural Regeneration Research. 2015;10(3):463. [DOI:10.4103/1673-5374.153697] [PMID] []
42. Wu Y-J, Tseng P, Chang C-F, Pai M-C, Hsu K-S, Lin C-C, et al. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain Cogn. 2014;91:87-94. [DOI:10.1016/j.bandc.2014.09.002] [PMID]
43. Uehara K, Coxon JP, Byblow WD. Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLoS One. 2015;10(3):e0122434. [DOI:10.1371/journal.pone.0122434] [PMID] []
44. Laakso I, Mikkonen M, Koyama S, Hirata A, Tanaka S. Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci Rep. 2019;9(1):626. [DOI:10.1038/s41598-018-37226-x] [PMID] []
45. Wu D, Zhou Y, Lv H, Liu N, Zhang P. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia. 2021;156:107854. [DOI:10.1016/j.neuropsychologia.2021.107854] [PMID]
46. Kuo M-F, Paulus W, Nitsche MA. Sex differences in cortical neuroplasticity in humans. Neuroreport. 2006;17(16):1703-7. [DOI:10.1097/01.wnr.0000239955.68319.c2] [PMID]
47. Chaieb L, Antal A, Paulus W. Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis Neurosci. 2008;25(1):77-81. [DOI:10.1017/S0952523808080097] [PMID]
48. Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors. Brain Sciences. 2022;12(5):522. [DOI:10.3390/brainsci12050522] [PMID] []
49. Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Frontiers in psychiatry. 2012;3:81. [DOI:10.3389/fpsyt.2012.00081] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb