دوره 21، شماره 2 - ( 1403 )                   جلد 21 شماره 2 صفحات 72-52 | برگشت به فهرست نسخه ها

Research code: مقاله حاصل از پایانامه کارشناسی ارشد hse موسسه عالی انرژ

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

zokaie M, abbasi M, falahati M, abbasi J, zand salimi F, Zarie M. Safety risk assessment by creating a combined model of FMEA, FTA and AHP fuzzy methods Case study: steel industry exploitation phase. ioh 2025; 21 (2) :52-72
URL: http://ioh.iums.ac.ir/article-1-3676-fa.html
ذکائی مجتبی، عباسی میلاد، فلاحتی محسن، عباسی جلال، زند سلیمی فردین، زارعی محمد. ارزیابی ریسک ایمنی با ایجاد یک مدل ترکیبی از روش های FMEA،FTA و AHP فازی مطالعه موردی: فاز بهره برداری صنعت فولاد. سلامت كار ايران. 1403; 21 (2) :52-72

URL: http://ioh.iums.ac.ir/article-1-3676-fa.html


دانشکده علوم پزشکی ساوه ، falahati.mohsen64@gmail.com
چکیده:   (1496 مشاهده)
زمینه و هدف: یکی از عوامل اصلی در مدیریت ایمنی و بهداشت شغلی، تدوین و اجرای ارزیابی ریسک است. بکارگیری رویکرد دقیق و مناسب در اجرای ارزیابی ریسک نقش مهمی را در مدیریت ریسک سازمان ایفا می کند.
روش بررسی : در این پژوهش پنج حادثه به عنوان مهمترین حوادث فاز بهره برداری صنعت فولاد انتخاب گردید. برآورد احتمال وقوع و کشف علل های ریشه ای با استفاده از FTA فازی محاسبه و شدت پیامد ریسک‌ حوادث در میان 14 نفر از خبرگان صنعت جمع آوری و مورد تحلیل قرار گرفت. در نهایت متغیرهای بدست آمده در مراحل قبل به عنوان ورودی سیستم استنتاج فازی طراحی شده در متلب در نظر گرفته شد و مقدار نهایی RPN با استفاده از قوانین اگر-آنگاه تعریف شده محاسبه گردید.
یافته‌ها: با توجه به نتایج بدست آمده احتمال وقوع حوادث سقوط از ارتفاع، سقوط اشیاء و برقگرفتگی به ترتیب از سایرحوادث بیشتر بود. در نهایت ریسک حوادث سقوط از ارتفاع و برقگرفتگی به ترتیب با مقدار RPN، 665/0 و 563/0 در محدوده ریسک های متوسط بالا قرار دارند. ریسک حوادث سقوط اشیاء نیز با مقدار RPN، 37/0 در محدوده ریسک های کم- متوسط قرار دارد.
نتیجه گیری: این مدل قابلیت به کارگیری در سیستم هایی را دارد که در آن داده کمی کافی و قابل اعتماد برای تخصیص رتبه به متغیرهای ورودی احتمال وقوع، احتمال کشف و شدت پیامد وجود ندارد و استفاده از متغیرهای زبانی، خبرگان صنعت را قادر می سازد تا قضاوت واقعی تر از سیستم تحت مطالعه داشته باشند.
 
متن کامل [PDF 1762 kb]   (649 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ایمنی
دریافت: 1403/6/13 | پذیرش: 1403/10/19 | انتشار: 1403/3/10

فهرست منابع
1. Jouzi SA, Kabzadeh S, Irankhahi M. Safety, Health & Environmental Risk Assessment And Management Of Ahwaz Pipe Manufacturing Company Via "William Fine" Method. 2010.
2. Yakut M, Kaya I, Bozkus E, editors. A Two-Dimensional Fuzzy Risk Assessment Model for Occupational Health and Safety Evaluations. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA); 2022: IEEE. [DOI:10.1109/HORA55278.2022.9799805]
3. Lee E, Park Y, Shin JG. Large engineering project risk management using a Bayesian belief network. Expert Systems with Applications. 2009;36(3):5880-7. [DOI:10.1016/j.eswa.2008.07.057]
4. Pokoradi L. Fuzzy logic-based risk assessment. AARMS, Academic and Applied Research in Military Science. 2002;1(1):63-73.
5. Chia ES, editor Risk assessment framework for project management. 2006 IEEE International Engineering Management Conference; 2006. [DOI:10.1109/IEMC.2006.4279889]
6. Tadic D, Djapan M, Misita M, Stefanovic M, Milanovic DD. A fuzzy model for assessing risk of occupational safety in the processing industry. International journal of occupational safety and ergonomics. 2012;18(2):115-26. [DOI:10.1080/10803548.2012.11076922] [PMID]
7. Binaghi E, Madella P. Fuzzy Dempster-Shafer reasoning for rule‐based classifiers. International Journal of Intelligent Systems. 1999;14(6):559-83. https://doi.org/10.1002/(SICI)1098-111X(199906)14:6<559::AID-INT2>3.0.CO;2-# [DOI:10.1002/(SICI)1098-111X(199906)14:63.0.CO;2-#]
8. Costigan A, Gardner D. Measuring Performance in OHS: an Investigation into the use of Positive Performance Indicators. Journal of Occupational Health & Safety (Australia/New Zealand). 2000;16(1):55-64.
9. Commission NOHS. OHS performance measurement in the construction industry. Canberra, National Occupational Health and Safety Commission; Commonwealth of Australia 1999.
10. Scotney V. Development of a health and safety performance measurement tool. HSE CONTRACT RESEARCH REPORT. 2000.
11. Shahin A. Integration of FMEA and the Kano model: An exploratory examination. International Journal of Quality & Reliability Management. 2004;21(7):731-46. [DOI:10.1108/02656710410549082]
12. Wang Y-M, Chin K-S, Poon GKK, Yang J-B. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert systems with applications. 2009;36(2):1195-207. [DOI:10.1016/j.eswa.2007.11.028]
13. Chin K-S, Chan A, Yang J-B. Development of a fuzzy FMEA based product design system. The International Journal of Advanced Manufacturing Technology. 2008;36(7-8):633-49. [DOI:10.1007/s00170-006-0898-3]
14. Chang K-H, Cheng C-H, Chang Y-C. Reprioritization of failures in a silane supply system using an intuitionistic fuzzy set ranking technique. Soft Computing. 2010;14(3):285-98. [DOI:10.1007/s00500-009-0403-7]
15. Jamshidi A, Kazemzadeh RB, editors. A Fuzzy Cost-based FMEA Model. International Conference on Industrial Experting and Operations Management; 2010: Citeseer.
16. Clemen RT, Winkler RL. Combining probability distributions from experts in risk analysis. Risk analysis. 1999;19(2):187-203. https://doi.org/10.1023/A:1006917509560 [DOI:10.1111/j.1539-6924.1999.tb00399.x]
17. Zadeh LA. Fuzzy sets. Information and control. 1965;8(3):338-53. [DOI:10.1016/S0019-9958(65)90241-X]
18. Zimmermann H-J. Fuzzy sets, decision making, and expert systems: Springer Science & Business Media; 2012.
19. Vidal L-A, Marle F, Bocquet J-C. Using a Delphi process and the Analytic Hierarchy Process (AHP) to evaluate the complexity of projects. Expert systems with applications. 2011;38(5):5388-405. [DOI:10.1016/j.eswa.2010.10.016]
20. Ardeshir A, Mohajeri M, Amiri M. Safety assessment in construction projects based on analytic hierarchy process and grey fuzzy methods. Iran Occupational Health. 2014;11(2).
21. Mete S, Oz NE, Gul M, Serin F, Celik E, editors. A Risk Assessment Approach Using Both Stochastic Data and Subjective Judgments. Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making: Proceedings of the INFUS 2019 Conference, Istanbul, Turkey, July 23-25, 2019; 2020: Springer. [DOI:10.1007/978-3-030-23756-1_130]
22. Ardeshir A, Amiri M, Mohajeri M. Safety risk assessment in mass housing projects using combination of fuzzy FMEA, fuzzy FTA and AHP-DEA. Iran Occupational Health. 2013;10(6).
23. Xiang Y, Liu C, Chao C, Liu H. Risk analysis and assessment of public safety of Submerged Floating Tunnel. Procedia Engineering. 2010;4:117-25. https://doi.org/10.1016/j.proeng.2010.08.014 [DOI:10.1016/j.proeng.2010.08.013]
24. Yang, Zh., Xu, B ., Chen, F ., Hao, Q ., Zhu, X ., Jia, Y ., (2010). "A New Failure Mode and Effects Analysis Model of CNC Machine Tool using Fuzzy Theory", P roceedings o f t he 2010 I EEEInternational Conference on Information and Automation, Harbin, China, pp. 582-587. [DOI:10.1109/ICINFA.2010.5512403]
25. Deshpande A, Khanna P. Fuzzy fault tree analysis: case studies. Reliability and Safety Analyses Under Fuzziness: Springer; 1995. p. 126-41. [DOI:10.1007/978-3-7908-1898-7_8]
26. Pan N-F, Wang H, editors. Assessing failure of bridge construction using fuzzy fault tree analysis. Fuzzy Systems and Knowledge Discovery, 2007 FSKD 2007 Fourth International Conference on; 2007: IEEE. [DOI:10.1109/FSKD.2007.193] [PMID]
27. Falahati M, Karimi A, Mohammadfam I, Mazloumi A, Reza Khanteymoori A, Yaseri M. Multi-dimensional model for determining the leading performance indicators of safety management systems. Work. 2020;67(4):959-69. [DOI:10.3233/WOR-203346] [PMID]
28. Falahati M, Karimi A, Zokaie M, Biabani A, Faghihnia Torshizi Y. Development and validation of active performance indicators of electrical safety using bow-tie and bayesian network techniques case study: Oil and gas industries construction projects. Iran Occupational Health. 2019;16(4):22-34.
29. Zokaee M, Falahati M, Asady H, Rafee M, Najafi M, Biabani A. Development and validation of a practical model for quantitative assessment of HSE performance of municipalities using the impact of urban management system components. Journal of Health & Safety at Work. 2019;9(2).
30. Nordlöf H, Wiitavaara B, Winblad U, Wijk K, Westerling R. Safety culture and reasons for risk-taking at a large steel-manufacturing company: Investigating the worker perspective. Safety science. 2015;73:126-35. [DOI:10.1016/j.ssci.2014.11.020]
31. Onisawa T. An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets and Systems. 1988;27(2):87-103. [DOI:10.1016/0165-0114(88)90140-6]
32. Mahmood Y, Ahmadi A, Verma AK, Srividya A, Kumar U. Fuzzy fault tree analysis: A review of concept and application. International Journal of System Assurance Engineering and Management. 2013;4(1):19-32. [DOI:10.1007/s13198-013-0145-x]
33. Saaty TL. Decision making with the analytic hierarchy process. International journal of services sciences. 2008;1(1):83-98. [DOI:10.1504/IJSSCI.2008.017590]
34. Martin JE, Rivas T, Matías J, Taboada J, Argüelles A. A Bayesian network analysis of workplace accidents caused by falls from a height. Safety Science. 2009;47(2):206-14. [DOI:10.1016/j.ssci.2008.03.004]
35. Mohajeri M, Amiri M. Ranking Main Causes of Falling from Height Hazard in High-Rise Construction Projects. Iran Occupational Health. 2014;11(5):53-64.
36. Montero-Odasso M, Van Der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, et al. World guidelines for falls prevention and management for older adults: a global initiative. Age and ageing. 2022;51(9):afac205.
37. Fang W, Ma L, Love PE, Luo H, Ding L, Zhou A. Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology. Automation in Construction. 2020;119:103310. [DOI:10.1016/j.autcon.2020.103310]
38. Zeng S, Tam VW, Tam CM. Towards occupational health and safety systems in the construction industry of China. Safety science. 2008;46(8):1155-68. [DOI:10.1016/j.ssci.2007.08.005]
39. Gürcanli GE, Müngen U. An occupational safety risk analysis method at construction sites using fuzzy sets. International Journal of Industrial Ergonomics. 2009;39(2):371-87. [DOI:10.1016/j.ergon.2008.10.006]
40. Liu H-T, Tsai Y-l. A fuzzy risk assessment approach for occupational hazards in the construction industry. Safety science. 2012;50(4):1067-78. [DOI:10.1016/j.ssci.2011.11.021]
41. Bentley TA, Hide S, Tappin D, Moore D, Legg S, Ashby L, et al. Investigating risk factors for slips, trips and falls in New Zealand residential construction using incident-centred and incident-independent methods. Ergonomics. 2006;49(1):62-77. [DOI:10.1080/00140130612331392236] [PMID]
42. Mortazavi S, Asilian H, Avestakhan M. Relationship between safety climate factors and the risk of dangerous situations in height among construction workers. 2011.
43. Amouei M, Barzegar A, et al. Electric shock, a sad ending (study of electric shock resulting in death referred to Legal Medicine Organization during one and a half years (from 1999 to october 2000), Scientific Journal Of Forensic Medicine.
44. Abdelgawad M, Fayek AR. Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management. 2010;136(9):1028-36. [DOI:10.1061/(ASCE)CO.1943-7862.0000210]
45. Shafiee M, Enjema E, Kolios A. An integrated FTA-FMEA model for risk analysis of engineering systems: a case study of subsea blowout preventers. Applied Sciences. 2019;9(6):1192. [DOI:10.3390/app9061192]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله سلامت کار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb