دوره 21، شماره 1 - ( 1403 )                   جلد 21 شماره 1 صفحات 18-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zokaei M, Safarpour Khotbesara N, Alimohammadi A, Falahati M, Faghihnia Torshizi Y, Mohammadian F et al . Presentation of classification model of occupational exposure to noise and heat based on multilayer perceptron neural network. ioh 2024; 21 (1) :1-18
URL: http://ioh.iums.ac.ir/article-1-3549-fa.html
ذکایی مجتبی، صفرپور خطبه سرا نگار، علیمحمدی علی، فلاحتی محسن، فقیه نیا ترشیزی یوسف، محمدیان فاروق و همکاران.. ارائه مدل طبقه بندی مواجهه شغلی با صدا و گرما مبتنی بر شبکه عصبی پرسپترون چند لایه. سلامت كار ايران. 1403; 21 (1) :1-18

URL: http://ioh.iums.ac.ir/article-1-3549-fa.html


دانشگاه علوم پزشکی کردستان ، f.mohammadian1986@gmail.com
چکیده:   (1019 مشاهده)
زمینه و هدف: مواجهه با گرما و صدا منجر به اثرات نامطلوب بر عملکردهای شناختی و رفتاری در محیط‌های شغلی و غیر شغلی می شود. لذا این مطالعه با هدف ارائه مدلی مبتنی  بر شبکه عصبی پرسپترون چند لایه برای طبقه‌بندی مواجهه شغلی ترازهای مختلف صدا و گرما انجام شد.
روش بررسی: در این  مطالعه 72 نفر از دانشجویان در رنج سنی 23 تا 33 سال به صورت داوطلبانه مورد بررسی قرار گرفت. اطلاعات ورودی به شبکه عصبی شامل داده‌های شناختی، رفتاری، فیزیولوژیک و نوروفیزیولوژی بود و لایه خروجی شامل سه کلاس کمتر، بیشتر و در حد مجاز مواجهه با ترازهای مختلف صدا و گرما برای طبقه‌بندی بود.
یافته ها: در این مطالعه مدل بهینه، شبکه عصبی با دولایه پنهان (15:10) بود و احتمال درستی طبقه­بندی شدن داده‌ها به‌صورت شانسی تقریبا 33 درصد محاسبه شد.  برای ارزیابی مدل ارائه‌شده درصد دقت، میانگین خطای مربعات (MSE) و حساسیت محاسبه شد که دقت طبقه‌بندی ترازهای مختلف صدا و گرما در مرحله آموزش مساوی 93/87 و در مرحله آزمون مساوی 92/62 درصد و اعتبار مدل تهیه‌شده92/68 درصد به دست آمد و همچنین درصد خطای میانگین مربعات و درصد حساسیت به ترتیب 0/53 و 90/42 بود.
بحث و نتیجه گیری: مطالعه حاضر نشان داد مدل ارائه‌شده مبتنی بر شبکه عصبی پرسپترون چند لایه دارای دقت و حساسیت قابل قبولی برای پیش‌بینی کلاس‌های مختلف مواجهه شغلی با صدا و گرما با استفاده از داده‌های ورودی سایکوفیزیولوژی و نوروفیزیولوژی دارد.
 
متن کامل [PDF 939 kb]   (236 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ارگونومی
دریافت: 1402/6/22 | پذیرش: 1403/1/20 | انتشار: 1403/4/10

فهرست منابع
1. McBride D, Bowens A, Zhang Z-l, Purdy S, Niland P. Assessment of occupational noise-induced hearing loss for ACC: A practical guide for otolaryngologists. 2019.
2. Rezaei-Hachesu V, Naderyan Fe'li S, Hokmabadi R, Kazemi M, Golbabaei F. Impact of Heat Stress on Renal Function: A Systematic Literature Review Focusing on Workplace Heat. Journal of Occupational Health and Epidemiology. 2022;11(2):157-70. [DOI:10.52547/johe.11.2.157]
3. Jafari MJ, Khosrowabadi R, Khodakarim S, Khodagholi F, Mohammadian F. The effects of combined exposure to noise and heat on human salivary cortisol and blood pressure. International Journal of Occupational Safety and Ergonomics. 2021;27(3):831-9. [DOI:10.1080/10803548.2019.1659578]
4. Jafari MJ, Khosrowabadi R, Khodakarim S, Mohammadian F. The effect of noise exposure on cognitive performance and brain activity patterns. Open access Macedonian journal of medical sciences. 2019;7(17):2924. [DOI:10.3889/oamjms.2019.742]
5. Borisov V, Leemann T, Seßler K, Haug J, Pawelczyk M, Kasneci G. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems. 2022.
6. Patel D, Jha K. Neural network model for the prediction of safe work behavior in construction projects. Journal of construction engineering and management. 2015;141(1):04014066. [DOI:10.1061/(ASCE)CO.1943-7862.0000922]
7. Roy S, Mishra DP, Bhattacharjee R, Agrawal H. Effect of Heat Stress and Development of WBGT Based Heat Stress Prediction Models for Underground Coal Miners Using Random Forest Algorithm and Artificial Neural Network. Available at SSRN 3994163. 2021. [DOI:10.2139/ssrn.3994163]
8. Uzair M, Jamil N, editors. Effects of hidden layers on the efficiency of neural networks. 2020 IEEE 23rd international multitopic conference (INMIC); 2020: IEEE. [DOI:10.1109/INMIC50486.2020.9318195]
9. CHIEN TW, WANG WC, Castillo RV, SU SB. A graphical health report constructed as a KIDMAP using Rasch analysis of IRT model. 2012.
10. Tajic R, Ghadami A. The effects of Noise Pollution and Hearing of metal Workers in Arak. Zahedan Journal of Research in Medical Sciences. 2008;10(4).
11. Alimohammadi I, Kanrash FA, Gerdefaramarzi RS, Nouri N. Investigation continuous noise exposure and occupational performance of the workers in the pharmaceutical industry: A Case Study in an Ampoule and Vial Production Industry. Occupational Medicine. 2019. [DOI:10.18502/tkj.v10i4.1731]
12. Melesse A, Maak S, Schmidt R, Von Lengerken G. Effect of long-term heat stress on key enzyme activities and T3 levels in commercial layer hens. Int J Livest Prod. 2011;2(7):107-16.
13. Jalil M, Sani M, Dor Z, Yahya M, Mohideen Batcha M, Hasnan K, editors. Heat stress investigation on laundry workers. International Conference on Ergonomics; 2007.
14. Wang X, Li D, Menassa CC, Kamat VR. Investigating the effect of indoor thermal environment on occupants' mental workload and task performance using electroencephalogram. Building and Environment. 2019;158:120-32. [DOI:10.1016/j.buildenv.2019.05.012]
15. Fan Y, Liang J, Cao X, Pang L, Zhang J. Effects of noise exposure and mental workload on physiological responses during task execution. International Journal of Environmental Research and Public Health. 2022;19(19):12434. [DOI:10.3390/ijerph191912434]
16. Chao P-C, Juang Y-J, Chen C-J, Dai Y-T, Yeh C-Y, Hu C-Y. Combined effects of noise, vibration, and low temperature on the physiological parameters of labor employees. The Kaohsiung journal of medical sciences. 2013;29(10):560-7. [DOI:10.1016/j.kjms.2013.03.004]
17. Chen C-J, Dai Y-T, Sun Y-M, Lin Y-C, Juang Y-J. Evaluation of auditory fatigue in combined noise, heat and workload exposure. Industrial Health. 2007;45(4):527-34. [DOI:10.2486/indhealth.45.527]
18. Bigert C, Bluhm G, Theorell T. Saliva cortisol-a new approach in noise research to study stress effects. International journal of hygiene and environmental health. 2005;208(3):227-30. [DOI:10.1016/j.ijheh.2005.01.014]
19. Smyth JM, Ockenfels MC, Gorin AA, Catley D, Porter LS, Kirschbaum C, et al. Individual differences in the diurnal cycle of cortisol. Psychoneuroendocrinology. 1997;22(2):89-105. [DOI:10.1016/S0306-4530(96)00039-X]
20. Ising H, Ising M. Chronic cortisol increases in the first half of the night caused by road traffic noise. Noise and Health. 2002;4(16):13.
21. Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. Measuring cortisol in human psychobiological studies. Physiology & behavior. 2007;90(1):43-53. [DOI:10.1016/j.physbeh.2006.08.025]
22. Choi Y, Kim M, Chun C. Measurement of occupants' stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment. 2015;88:65-72. [DOI:10.1016/j.buildenv.2014.10.003]
23. Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, et al. Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing. 2016;214:242-68. [DOI:10.1016/j.neucom.2016.06.014]
24. Ahmed M, AlQadhi S, Mallick J, Kahla NB, Le HA, Singh CK, et al. Artificial neural networks for sustainable development of the construction industry. Sustainability. 2022;14(22):14738. [DOI:10.3390/su142214738]
25. Kohzadi N, Boyd MS, Kaastra I, Kermanshahi BS, Scuse D. Neural networks for forecasting: an introduction. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie. 1995;43(3):463-74. [DOI:10.1111/j.1744-7976.1995.tb00135.x]
26. Vellido A, Lisboa PJ, Vaughan J. Neural networks in business: a survey of applications (1992-1998). Expert Systems with applications. 1999;17(1):51-70. [DOI:10.1016/S0957-4174(99)00016-0]
27. Isaacson M, Premasiri S, Yang G. Wave interactions with vertical slotted barrier. Journal of waterway, port, coastal, and ocean engineering. 1998;124(3):118-26. [DOI:10.1061/(ASCE)0733-950X(1998)124:3(118)]
28. Alavi AH, Gandomi AH. Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computers & Structures. 2011;89(23-24):2176-94. [DOI:10.1016/j.compstruc.2011.08.019]
29. Haykin S. Neural networks: a comprehensive foundation prentice-hall upper saddle river. NJ MATH Google Scholar. 1999:43.
30. Shahiri AM, Husain WJPCS. A review on predicting student's performance using data mining techniques. 2015;72:414-22. [DOI:10.1016/j.procs.2015.12.157]
31. Aliabadi M, Farhadian M, Jalali M, Jahangiri M, Negahban AR. A new empirical approach for predicting heat strain in workers exposed to hot indoor environments. Indoor and Built Environment. 2018;27(5):597-605. [DOI:10.1177/1420326X16687800]
32. Francl A, McDermott JH. Deep neural network models of sound localization reveal how perception is adapted to real-world environments. Nature human behaviour. 2022;6(1):111-33. [DOI:10.1038/s41562-021-01244-z]
33. Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Industrial health. 2006;44(3):388-98. [DOI:10.2486/indhealth.44.388]
34. Dehghan H, Mortazavi SB, Jafari MJ, Maracy MR. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2012;17(12):1108.
35. Schulte P, Bhattacharya A, Butler C, Chun H, Jacklitsch B, Jacobs T, et al. Advancing the framework for considering the effects of climate change on worker safety and health. Journal of occupational and environmental hygiene. 2016;13(11):847-65. [DOI:10.1080/15459624.2016.1179388]
36. JENAABADI H, GHAVIDEL M. Comparative examination of attention and answer control rate in two groups of people with attention-deficit hyperactivity disorder and cognitive disorder. journal of cognitive strategies in learning.5(9):1-11.
37. Yekta MS. Efficacy of Neurofeedback on Behavioral Inhibition and Impulsivity in Students with ADHD.
38. Sohlberg MM, Mateer CA. Effectiveness of an attention-training program. Journal of clinical and experimental neuropsychology. 1987;9(2):117-30. [DOI:10.1080/01688638708405352]
39. Koh DS-Q, Koh GC-H. The use of salivary biomarkers in occupational and environmental medicine. Occupational and environmental medicine. 2007;64(3):202-10. [DOI:10.1136/oem.2006.026567]
40. Clements AD, Parker CRJP. The relationship between salivary cortisol concentrations in frozen versus mailed samples. Psychoneuroendocrinology. 1998;23(6):613-6. [DOI:10.1016/S0306-4530(98)00031-6]
41. Kaufman E, Lamster IB. The diagnostic applications of saliva-a review. Critical Reviews in oral biology & medicine. 2002;13(2):197-212. [DOI:10.1177/154411130201300209]
42. Pouryaghoub G, Mehrdad R, Valipouri A. Effect of acute noise exposure on salivary cortisol: a randomized controlled trial. Acta Medica Iranica. 2016:657-61.
43. Hamer M, O'Donnell K, Lahiri A, Steptoe A. Salivary cortisol responses to mental stress are associated with coronary artery calcification in healthy men and women. European heart journal. 2010;31(4):424-9. [DOI:10.1093/eurheartj/ehp386]
44. Wirtz PH, Elsenbruch S, Emini L, Rüdisüli K, Groessbauer S, Ehlert U. Perfectionism and the cortisol response to psychosocial stress in men. Psychosomatic medicine. 2007;69(3):249-55. [DOI:10.1097/PSY.0b013e318042589e]
45. Reza T. Normalization of General Health Questionnaire (GHQ) on Shiraz University Students. 2005.
46. Malakouti SK, Fatollahi P, Mirabzadeh A, Zandi TJIP. Reliability, validity and factor structure of the GHQ-28 used among elderly Iranians. International Psychogeriatrics. 2007;19(4):623-34. [DOI:10.1017/S1041610206004522]
47. Alimohammadi I, Nassiri P, Azkhosh M, Sabet M, Hosseini MJPR. Reliability and validity of the Persian translation of the Weinstein Noise Sensitivity Scale. Psychological Research. 2006;9(1-2):74-87. [DOI:10.1037/t41784-000]
48. Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology. 52: Elsevier; 1988. p. 139-83. [DOI:10.1016/S0166-4115(08)62386-9]
49. Ghorbani M, editor Personal and observational methods to assess the workload on the assembly line of an auto industry. Proceeding of the 8th National Conferences on Safety and Health Working Sari, Iran; 2013.
50. Mohammadi M, Mazloumi A, Zeraati HJJoSoPH, Research IoPH. Designing questionnaire of assessing mental workload and determine its validity and reliability among ICUs nurses in one of the TUMS's hospitals. 2013;11(2):87-96.
51. Xie Y, Murphey YL, Kochhar DS. Personalized driver workload estimation using deep neural network learning from physiological and vehicle signals. IEEE Transactions on Intelligent Vehicles. 2019;5(3):439-48. [DOI:10.1109/TIV.2019.2960946]
52. Bagherzadeh S, Maghooli K, Shalbaf A, Maghsoudi A. Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals. Cognitive Neurodynamics. 2022;16(5):1087-106. [DOI:10.1007/s11571-021-09756-0]
53. Aung ST, Hassan M, Brady M, Mannan ZI, Azam S, Karim A, et al. Entropy-based emotion recognition from multichannel EEG signals using artificial neural network. Computational Intelligence and Neuroscience. 2022;2022. [DOI:10.1155/2022/6000989]
54. Bishop CM, Nasrabadi NM. Pattern recognition and machine learning: Springer; 2006.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله سلامت کار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb