دوره 20، شماره 2 - ( 1402 )                   جلد 20 شماره 2 صفحات 325-302 | برگشت به فهرست نسخه ها

Ethics code: IR.SBMU.PHNS.REC.1401.149


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibian mohamadabadi M, Gholamnia R, Saeedi R. SAFETY ASSESSMENT OF DOUBLE-WALLED LPG TANKS USING FUZZY BAYESIAN NETWORK AND IMPROVED SIMILARITY AGGREGATION METHOD. ioh 2024; 20 (2) :302-325
URL: http://ioh.iums.ac.ir/article-1-3552-fa.html
حبیبیان محمدآبادی محمدرضا، سعیدی رضا، غلام نیا رضا. ارزیابی ایمنی مخازن دوجداره گازمایع با استفاده از شبکه بیزین فازی و براساس روش تجمیع شباهت بهبود یافته. سلامت كار ايران. 1402; 20 (2) :302-325

URL: http://ioh.iums.ac.ir/article-1-3552-fa.html


گروه سلامت، ایمنی و محیط زیست، دانشکده بهداشت و ایمنی، دانشگاه علوم پزشکی شهیدبهشتی تهران، ایران ، reza_gholamnia@yahoo.com
چکیده:   (869 مشاهده)
زمینه و هدف: مخازن ذخیره به‌عنوان یکی از مهم‌ترین بخش‌های مجتمع‌های فرایندی حساسیت‌ بالایی را در بحث ایمنی دارند؛ چراکه در صورت وقوع حادثه هم باعث آسیب‌ به پرسنل و هم ایجاد ضرر مالی می­شوند. تعیین روشی بهینه و دارای عدم‌قطعیت کمتر جهت تعیین علل پراهمیت و بحرانی در وقوع حوادث می ­تواند در پیشگیری از حوادث بسیار موثر باشد.
روش بررسی: در ابتدا شناسایی اولیه مخاطرات از مخزن صورت گرفت و رویداد نشت از سیستم ذخیره ­سازی به‌عنوان رویداد اصلی انتخاب شد. در مرحله بعد ابتدا درخت‌واره پاپیونی و سپس شبکه بیزین ترسیم شد و روابط بین گره ­ها وارد نرم ­افزار گردید. احتمالات گره­ ها با استفاده از نظر کارشناسان و روش تجمیع شباهت بهبودیافته برآورد شده و در نهایت با درنظرگرفتن رویداد اصلی به‌عنوان گره شاهد، مقادیر نرخ تغییرات (ROV) جهت شناسایی پراهمیت ­ترین رویدادها محاسبه شد.
یافته ­ها: در این تحقیق مجموعا 53 رویداد پایه ­ای شناسایی شد. احتمال رویداد نشت از سیستم ذخیره ­سازیLPG مقدار 1.5E-02 به دست آمد و محتمل­ ترین پیامد خطرناک آتش استخری شناسایی شد. پس از محاسبه­ ی RoV، رویدادهایی مانند نشت از اتصالات نامناسب، بلایای طبیعی، نقص­ های ساختاری در ولوها و لایه ­ی بتنی به‌عنوان علل پراهمیت انتخاب شده و پیشنهادات اصلاحی لازم پیشنهاد گردید.
نتیجه­ گیری: شبکه­ بیزین یکی از ابزارهای مناسب جهت مدل­سازی علت-پیامد به شمار می­رود. ترکیب این روش با منطق فازی و تجمیع شباهت بهبودیافته می‌تواند باعث کاهش عدم‌قطعیت در مطالعات گردد. همچنین آن­ها با داشتن قابلیت به ­روزرسانی رویدادها می­ توانند باعث اولویت­ بندی رویدادهای بحرانی شوند. نتایج حاصل از این اولویت­ بندی می­ تواند به‌عنوان یک راهنمای مناسب برای بهینه ­سازی فعالیت­ های نگهداری و تعمیرات پیشگیرانه نیز مورداستفاده قرارگیرد.
 
متن کامل [PDF 2141 kb]   (154 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ایمنی فرآیند
دریافت: 1402/5/25 | پذیرش: 1402/10/3 | انتشار: 1402/10/10

فهرست منابع
1. Zarei E, Mohammadfam I, Azadeh A, Khakzad N, Mirzaei Aliabadi M. Dynamic risk assessment of chemical process systems using bayesian network[In persian]. Iran Occup Heal. 2018; [DOI:10.1016/j.jhazmat.2016.09.074]
2. Prasun Kumar Roy, Arti Bhatt, Bimal Kumar, Sarvjeet Kaur CR. Consequence and risk assessment: Case study of an ammonia storage facility Prasun. 2011;
3. Kumar M, Kaushik M. System failure probability evaluation using fault tree analysis and expert opinions in intuitionistic fuzzy environment. J Loss Prev Process Ind. 2020 Sep 1;67:104236. [DOI:10.1016/j.jlp.2020.104236]
4. Xiaoxue Guo, Jie Ji, Faisal Khan, Long Ding YY. Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident. Process Saf Environ Prot. 2021;
5. Jafari MJ, Zarei E, Badri N. The quantitative risk assessment of a hydrogen generation unit. Int J Hydrogen Energy [Internet]. 2012;37(24):19241-9. [DOI:10.1016/j.ijhydene.2012.09.082]
6. Yin H, Liu C, Wu W, Song K, Liu D, Dan Y. Safety assessment of natural gas storage tank using similarity aggregation method based fuzzy fault tree analysis (SAM-FFTA) approach. J Loss Prev Process Ind. 2020;66(February). [DOI:10.1016/j.jlp.2020.104159]
7. Mukherjee R, Carter R. How to prioritize safeguards when they are all critical. 21st Process Plant Saf Symp 2019 - Top Conf 2019 AIChE Spring Meet 15th Glob Congr Process Saf. 2019;11-37.
8. NFPA TC of L by. NFPA 58-Liquified petroleum gas code. 2020;
9. Sarvestani K, Ahmadi O, Mortazavi SB, Mahabadi HA. Development of a predictive accident model for dynamic risk assessment of propane storage tanks. Process Saf Environ Prot. 2021;148:1217-32. [DOI:10.1016/j.psep.2021.02.018]
10. Energy Information Administration, FERC, California Energy Commission, Center for Liquefied Natural Gas, and Green Futures. Liquefied Natural Gas (LNG) [Internet]. 2009. Available from: http://www.opc-dc.gov/ns/link.htm#14
11. Chang JI, Lin CC. A study of storage tank accidents. J Loss Prev Process Ind. 2006;19(1):51-9. [DOI:10.1016/j.jlp.2005.05.015]
12. Jianxing Y, Shibo W, Yang Y, Haicheng C, Haizhao F, Jiahao L, et al. Process system failure evaluation method based on a Noisy-OR gate intuitionistic fuzzy Bayesian network in an uncertain environment. Process Saf Environ Prot. 2021;150:281-97. [DOI:10.1016/j.psep.2021.04.024]
13. Leitch M. ISO 31000:2009-The New International Standard on Risk Management. Risk Anal [Internet]. 2010 Apr 8;30(6):887-92. [DOI:10.1111/j.1539-6924.2010.01397.x]
14. CCPS. Bow ties in risk management: A concept book for process safety [Internet]. Bow Ties in Risk Management: A Concept Book for Process Safety. 2018 [cited 2021 Aug 19]. 1-180 p. Available from: https://www.aiche.org/ccps/resources/publications/books/bow-ties-risk-management-concept-book-process-safety [DOI:10.1002/9781119490357]
15. De Dianous V, Fiévez C. ARAMIS project: A more explicit demonstration of risk control through the use of bow-tie diagrams and the evaluation of safety barrier performance. Vol. 130, Journal of Hazardous Materials. 2006. p. 220-33. [DOI:10.1016/j.jhazmat.2005.07.010]
16. Pitblado R, Weijand P. Barrier diagram (Bow Tie) quality issues for operating managers. Vol. 33, Process Safety Progress. 2014. p. 355-61. [DOI:10.1002/prs.11666]
17. Crowl D, Louvar J. Chemical Process Safety Fundamentals with Applications. International Series in the Physical and Chemical Engineering Sciences. 2019. 12-26 p.
18. Pouyakian M, Jafari MJ, Laal F, Nourai F, Zarei E. A comprehensive approach to analyze the risk of floating roof storage tanks. Process Saf Environ Prot [Internet]. 2021 Feb;146:811-36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0957582020319194 [DOI:10.1016/j.psep.2020.11.051]
19. Unnikrishnan G. Oil and Gas Processing Equipment, Risk Assessment with Bayesian Networks. 2020. [DOI:10.1201/9780429287800]
20. Hsi-Mei Hsu, Chen-Tung Chen. Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst [Internet]. 1996 May;79(3):279-85. [DOI:10.1016/0165-0114(95)00185-9]
21. Sugeno M. Fuzzy Modeling and Control Selected Works of Sugeno. Hung T. Nguyen NRP, editor. 1999.
22. Chen S-J, Hwang C-L. Fuzzy Multiple Attribute Decision Making Methods. In 1992. p. 289-486. Available from: http://link.springer.com/10.1007/978-3-642-46768-4_5 [DOI:10.1007/978-3-642-46768-4_5]
23. Detyniecki M, Yager RR. Ranking fuzzy numbers using α-weighted valuations. Int J Uncertainty, Fuzziness Knowledge-Based Syst [Internet]. 2000 Oct 21;08(05):573-91. [DOI:10.1142/S021848850000040X]
24. API. Tank Systems for Refrigerated Liquefied Gas Storage, API Standard 625. 2010;(November 2014).
25. Mehdizadeh D. Construction and engineering of double-walled tanks for liquified gases. In: The first international of oil, gas, petrochemical and power plant. 2012.
26. Vílchez JA, Espejo V, Casal J. Generic event trees and probabilities for the release of different types of hazardous materials. J Loss Prev Process Ind [Internet]. 2011 May;24(3):281-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925753516000084 [DOI:10.1016/j.jlp.2011.01.005]
27. BS EN 1473 :Installation and equipment for liquefied natural gas - Design of onshore installations. BSI standards publication; 2021.
28. Kuchipudi ST, Ghosh D, Gupta H. Automated Assessment of Reinforced Concrete Elements using Ground Penetrating Radar. Autom Constr [Internet]. 2022 Aug;140:104378. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926580522002515 [DOI:10.1016/j.autcon.2022.104378]
29. Ghasemi M, Nasl Saraji G, Zakerian A, Azhdari.MR. Control of human errors and comparison of risk levels after correction action with the SHERPA method in a control room of petrochemical industry[In persian]. Iran Occup Heal. 2011;
30. Tong X, Fang W, Yuan S, Ma J, Bai Y. Application of Bayesian approach to the assessment of mine gas explosion. J Loss Prev Process Ind [Internet]. 2018;54:238-45. Available from: [DOI:10.1016/j.jlp.2018.04.003]
31. Jafari MJ, Pouyakian M, khanteymoori A, Hanifi SM. Reliability evaluation of fire alarm systems using dynamic Bayesian networks and fuzzy fault tree analysis. J Loss Prev Process Ind [Internet]. 2020;67:104229. Available from: [DOI:10.1016/j.jlp.2020.104229]
32. Sun H, Wang H, Yang M, Reniers G. Resilience-based approach to safety barrier performance assessment in process facilities. J Loss Prev Process Ind [Internet]. 2021;73(July):104599. Available from: [DOI:10.1016/j.jlp.2021.104599]
33. Zhang Y, Weng WG. Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference. Reliab Eng Syst Saf [Internet]. 2020;203:107089. Available from: [DOI:10.1016/j.ress.2020.107089]
34. Amin MT, Khan F, Imtiaz S. Dynamic availability assessment of safety critical systems using a dynamic Bayesian network. Reliab Eng Syst Saf [Internet]. 2018;178:108-17. Available from: [DOI:10.1016/j.ress.2018.05.017]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله سلامت کار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran Occupational Health

Designed & Developed by : Yektaweb